Author: Kamitani, T.
Paper Title Page
TUOBA01 Beam Commissioning of SuperKEKB 1019
 
  • Y. Funakoshi, T. Abe, T. Adachi, K. Akai, Y. Arimoto, K. Egawa, Y. Enomoto, J.W. Flanagan, H. Fukuma, K. Furukawa, N. Iida, H. Iinuma, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, H. Kaji, T. Kamitani, T. Kawamoto, S. Kazama, M. Kikuchi, T. Kobayashi, K. Kodama, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, S. Nakamura, T.T. Nakamura, H. Nakayama, T. Natsui, M. Nishiwaki, K. Ohmi, Y. Ohnishi, T. Oki, S. Sasaki, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, H. Sugimoto, M. Tanaka, M. Tawada, S. Terui, M. Tobiyama, S. Uehara, S. Uno, X. Wang, K. Watanabe, Y. Yano, S.I. Yoshimoto, R. Zhang, D. Zhou, X. Zhou, Z.G. Zong
    KEK, Ibaraki, Japan
  • D. El Khechen
    LAL, Orsay, France
 
  In this report, we describe the machine operation in the first 3 months of the Phase 1 commissioning of SuperKEKB. The beam commissioning is smoothly going on. Vacuum scrubbing, the optics corrections and others are described.  
slides icon Slides TUOBA01 [9.346 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUOBA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOR019 Development of CVD Diamond Detector for Beam Conditioning Monitor at the SuperKEKB Linac 2707
 
  • S. Kazama, T. Kamitani
    KEK, Ibaraki, Japan
  • P. Bambade, V. Kubytskyi
    LAL, Orsay, France
 
  Positron beams in SuperKEKB will be produced from electromagnetic showers originating from the interaction between primary electron beams and a tungsten target. Since the emittance of primary beams is very small, the target is easy to be destroyed if focused beams are irradiated. In the SuperKEKB LINAC, a plate called spoiler is placed in the upstream of the target to enlarge the beam spot size. If the beam control is in a correct way, radioactive rays will be observed near both the spoiler and the target. However, if the beam control is not successful and primary beams are irradiated directly on the target, significant radiations are observed only near the target. If such a behavior is observed, primary beams must be stopped to protect the target. Since the number of electrons in a bunch is quite large(~10nC), the radiation dose is expected to be very high. Therefore, the radiation detector is required to have a high radiation-tolerance over a long period of time. Diamond has a high radiation tolerance due to its strong covalent bond, and we are now developing radiation detectors using diamond crystals. In this talk, current status including beam test measurements will be shown.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOR019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR040 Emittance Growth by Misalignments and Jitters in SuperKEKB Injector Linac 3871
 
  • Y. Seimiya, Y. Enomoto, K. Furukawa, T. Higo, T. Kamitani, F. Miyahara, Y. Ohnishi, M. Satoh, T. Suwada, M. Tanaka
    KEK, Ibaraki, Japan
 
  Funding: This work was partly supported by JSPS KAKENHI Grant Number 16K17545.
SuperKEKB injector linac have to transport high-charged beam with low emittance to SuperKEKB ring for high luminosity, 8¥times1035. For the low emittance, photocathode RF gun was adopted as electron source. One of the main reason of the beam emittance blow-up electron linac is generally induced by wakefield in acceleration cavities. A charged beam with a offset from a center of a cavity is affected by the wakefield depending on the offset size in the acceleration cavity and the beam emittance is increased. This emittance blow-up can be eliminated by appropriate steering magnet control so as to cancel the wake effect in the acceleration cavity. We perform particle tracking simulation with some misalignments and beam jitter. Emittance growth by the misalignments and the beam jitter is evaluated in this report.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY027 Commissioning Status of SuperKEKB Injector Linac 4152
 
  • M. Satoh, M. Akemoto, D.A. Arakawa, Y. Arakida, A. Enomoto, Y. Enomoto, S. Fukuda, Y. Funakoshi, K. Furukawa, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Iwase, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, S. Kazama, M. Kikuchi, H. Koiso, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Mimashi, T. Miura, F. Miyahara, T. Mori, A. Morita, H. Nakajima, K. Nakao, T. Natsui, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, D. Satoh, Y. Seimiya, T. Shidara, A. Shirakawa, M. Suetake, H. Sugimoto, T. Suwada, M. Tanaka, M. Tawada, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
    KEK, Ibaraki, Japan
 
  The SuperKEKB main ring is currently being constructed for aiming at the peak luminosity of 8 x 1035 cm-2s−1. The electron/positron injector linac upgrade is also going on for increasing the intensity of bunch charge with keeping the small emittance. The key upgrade issues are the construction of positron damping ring, a new positron capture system, and a low emittance photo-cathode rf electron source. The injector linac beam commissioning started in the October of 2013. In this paper, we report the present status and future plan of SuperKEKB injector commissioning.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)