Author: Johnstone, J.A.
Paper Title Page
MOPOY060 Performance Analysis for the New g-2 Experiment at Fermilab 996
 
  • D. Stratakis, M.E. Convery, C. Johnstone, J.A. Johnstone, J.P. Morgan, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • J.D. Crmkovic, W. Morse, V. Tishchenko
    BNL, Upton, Long Island, New York, USA
  • N.S. Froemming
    University of Washington, CENPA, Seattle, USA
  • M. Korostelev
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Korostelev
    Lancaster University, Lancaster, United Kingdom
 
  The new g-2 experiment at Fermilab aims to measure the muon anomalous magnetic moment to a precision of ±0.14 ppm ─ a fourfold improvement over the 0.54 ppm precision obtained in the g-2 BNL E821experiment. Achieving this goal requires the delivery of highly polarized 3.094 GeV/c muons with a narrow ±0.5% Δp/p acceptance to the g-2 storage ring. In this study, we describe a muon capture and transport scheme that should meet this requirement. First, we present the conceptual design of our proposed scheme wherein we describe its basic features. Then, we detail its performance numerically by simulating the pion production in the (g-2) production target, the muon collection by the downstream beamline optics as well as the beam polarization and spin-momentum correlation up to the storage ring. The sensitivity in performance of our proposed channel against key parameters such as magnet apertures and magnet positioning errors is analyzed  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR025 Design of the LBNF Beamline 1291
 
  • V. Papadimitriou, K. Ammigan, J.E. Anderson, K. Anderson, R. Andrews, V.T. Bocean, C.F. Crowley, N. Eddy, B.D. Hartsell, S. Hays, P. Hurh, J. Hylen, J.A. Johnstone, P.H. Kasper, T.R. Kobilarcik, G.E. Krafczyk, B.G. Lundberg, A. Marchionni, N.V. Mokhov, C.D. Moore, D. Pushka, I.L. Rakhno, S.D. Reitzner, P. Schlabach, V.I. Sidorov, A.M. Stefanik, S. Tariq, L.R. Valerio, K. Vaziri, G. Velev, G.L. Vogel, K.E. Williams, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • C.J. Densham
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: Work supported by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a neutrino beam of sufficient intensity and appropriate energy range toward DUNE detectors, placed deep underground at the SURF Facility in South Dakota. The primary proton beam (60 - 120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by magnetic horns into a 194 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015. We discuss here the design status and the associated challenges as well as the R&D and plans for improvements before baselining the facility.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)