Author: Jin, S.
Paper Title Page
WEPMB028 High HOM Damping Structure Study for CEPC 2183
 
  • Z.C. Liu, J. Gao, S. Jin, Y. Wang, H.J. Zheng
    IHEP, Beijing, People's Republic of China
 
  Both large circular collider such as CEPC and high current ERL facility need high HOM damping superconducting cavity. The slotted cavity is an option for such applications. It has three slotted waveguides which can highly damp the HOM and extract high HOM power out. However, the HOM absorbers for such facility are usually put outside of the cryomodule to decrease the influence of HOM power on the cryogenic system. Large slot waveguide need to make smaller transition structure to adapt this situation. A rectangular waveguide to coaxial waveguide structure was designed to the slotted cavity. In this paper, we will show the cavity HOM damping design scheme with this structure.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB032 Fabrication and Testing Status of IHEP03 2194
 
  • T.X. Zhao, J. Gao, S. Jin, Z.Q. Li, Y.L. Liu, Z.C. Liu, Y. Wang, J.Y. Zhai, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • M. Asano, E. Kako
    KEK, Ibaraki, Japan
  • H. Yu, H. Yuan
    BIAM, Beijing, People's Republic of China
 
  After the successful development of the IHEP01 and IHEP02 1.3GHz 9cell superconducting cavity, we developed a 1.3GHz Tesla-Like 9cell superconducting cavities in collaboration with KEK. The cavity was made by niobium material produced in OTIC, Ningxia, China. After completeing welding, leakage check, BCP, HPR, we sent the cavity to KEK and used the standard procedures of ILC cavity for processing. These include electron polishing, vacuum furnace outgassing, tuning for field flatness and frequency, light EP, baking and vertical test. We target to have a high Q0 cavity for this experiment. In this paper, we will report the experimental status of the IHEP03 cavity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOR028 Numerical Analysis of Stresses for the Target of the ILC 300 Hz Conventional Positron Source 3838
 
  • S. Jin, J. Gao
    IHEP, Beijing, People's Republic of China
  • T. Omori
    KEK, Ibaraki, Japan
  • P. Sievers
    CERN, Geneva, Switzerland
 
  A 300Hz conventional, e- driven positron source for the ILC is proposed by an international team. In this paper, we focus on numerical analysis of dynamic stresses in the Tungsten target. These are driven by the pulsed e-beam, which causes rapid heating and subsequent, dynamic loads in the target which can lead to fracture and failure of it. A program of ANSYS workbench is used in the study. The dynamic stresses from both of extremely short (10 ns) and nominal (1μs) thermal pulses are systematically studied in various target related parts such as small spheres, cylinders. Particular attention has also been paid to the buckling of foils.
(*) The first proposal was published in NIMA 672 (2012) 52-56 by
T. Omori, et. al.. The authors come from seven institutes including KEK, Hiroshima U., DESY, ANL, IHEP, SOKENDAI, U. of Hamburg
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOR028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)