Author: Hinder, F.
Paper Title Page
TUPMR026 First Experience of Applying Loco for Optics at Cosy 1294
 
  • D. Ji
    IHEP, Beijing, People's Republic of China
  • M. Bai, Y. Dutheil, F. Hinder, B. Lorentz, M. Simon, C. Weidemann
    FZJ, Jülich, Germany
 
  COSY is a cooler synchrotron designed for internal target hadron physics experiments, equipped with both electron cooling system and stochastic cooling system. During the past couple of years, COSY has been evolved into an ideal test facility for accelerator technology development as well as detector development for the Facility of Anti-proton and Ion Research at Darmstadt (FAIR). In addition, COSY has been the test ground for exploring the feasibility of a storage ring based Electric Dipole Moment (EDM) measurement. The proposed precursor experiment of a direct measurement of the EDM of the deuteron at COSY using an RF wien filter by the Jülich Electric Dipole moment Investigation (JEDI) requests significant improvement of beam based measurements as well as beam control. In this paper, first results of measured linear optics based on AT-LOCO are reported. Simulation studies are also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB009 Model Driven Machine Improvement of COSY Based on ORM Data 3240
 
  • C. Weidemann, M. Bai, F. Hinder, B. Lorentz
    FZJ, Jülich, Germany
 
  The COoler SYnchrotron in Jülich accelerates and stores unpolarized and polarized proton or deuteron beams in the momentum range between 0.3 GeV/c and 3.65 GeV/c [*,**]. This, in combination with its diverse capabilities of phase space cooling and the flexibility of the lattice with respect to ion-optical settings makes COSY an ideal test facility for accelerator technology development. High demands on beam control and beam based measurements have to be fulfilled for future experiments such as the proposed precursor experiment for a direct measurement of the electric dipole moment of the deuteron (see [***] and references within). The analysis of measured orbit response matrices (ORM), which com- prise the focussing structure of the ring, allows for a better understand- ing of machine imperfections such as gradient errors and misalignments of quadrupole magnets. This contribution presents the development of a MAD-X based LOCO (Linear Optics from Closed Orbits) algorithm [****] in a C++ program aiming to calibrate and correct linear optics as well as improving beam control at COSY.
* R. Maier, NIM A 390, 1 (1997).
** S.A. Martin et al., NIM A 236, 249-255 (1985).
*** D. Eversmann et al. [JEDI Collaboration], Phys. Rev. Lett. 115, 094801 (2015).
**** J. Safranek, NIM A 388, 27 (1997).
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)