Author: Halavanau, A.
Paper Title Page
TUPMY038 Preliminary Measurement of the Transfer Matrix of a TESLA-type Cavity at FAST 1632
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • N. Eddy, D.R. Edstrom, A. Lunin, P. Piot, J. Ruan, J.K. Santucci, J.K. Santucci, N. Solyak
    Fermilab, Batavia, Illinois, USA
  Funding: US Department of Energy (DOE) under contract DE-SC0011831 with Northern Illinois University. Fermilab is operated by the Fermi Research Alliance LLC under US DOE contract DE-AC02-07CH11359.
Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread application in Science and Industry. Many current and planned projects employ 1.3-GHz 9-cell superconducting cavities of the TESLA design*. In the present paper we discuss the transverse-focusing properties of such a cavity and non-ideal transverse-map effects introduced by field asymmetries in the vicinity of the input and high-order-mode radiofrequency (RF) couplers**. We especially consider the case of a cavity located downstream of an RF-gun in a setup similar to the photoinjector of the Fermilab Accelerator Science and Technology (FAST) facility. Preliminary experimental measurements of the CC2 cavity transverse matrix were carried out at the FAST facility. The results are discussed and compared with analytical and numerical simulations.
* A. Aunes et al., Phys. Rev.ST Accel. Beams 3, 092001 (2000).
** P. Piot, el. al., Proc. 2005 Part. Accel. Conf., Knoxville, TN, p. 4135 (2005).
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMY038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPOW021 Generation of Homogeneous and Patterned Electron Beams using a Microlens Array Laser-Shaping Technique 3983
SUPSS020   use link to see paper's listing under its alternate paper code  
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.R. Edstrom, P. Piot, J. Ruan, J.K. Santucci
    Fermilab, Batavia, Illinois, USA
  • W. Gai, G. Ha, J.G. Power, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • G. Qiang
    TUB, Beijing, People's Republic of China
  Funding: Northern Illinois University - US DOE contract No. DE-SC0011831. Fermilab - US DOE contract No. DE-AC02-07CH11359. The Argonne wakefield facility - US DOE contract No. DE-AC02-06CH11357.
In photocathodes the achievable electron-beam parameters are controlled by the laser used to trigger the photoemission process. Non-ideal laser distribution hampers the final beam quality. Laser inhomogeneities, for instance, can be "amplified" by space-charge force and result in fragmented electron beams. To overcome this limitation laser shaping methods are routinely employed. In the present paper we demonstrate the use of simple microlens arrays to dramatically improve the transverse uniformity. We also show that this arrangement can be used to produce transversely-patterned electron beams. Our experiments are carried out at the Argonne Wakefield Accelerator facility.
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)