Author: Gu, Q.
Paper Title Page
MOPMW015 Wakefields Studies of High Gradient X-band Accelerating Structure at SINAP 429
SUPSS087   use link to see paper's listing under its alternate paper code  
 
  • X.X. Huang, W. Fang, Q. Gu, M. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Shanghai compact hard x-ray free electron laser (CHXFEL)* is now proposed accompanied with a high-gradient accelerating structure, which is the trend of large scale and compact facility. This structure operated at X-band (11424 MHz) holds the promise to achieve high gradient up to 80 MV/m. However, due to its particular property, a more serious wakefields** will be generated, leading to worse beam instability effects. In this paper, the computation of this case will be carried out with simulation. Moreover, analysis and optimization will be adopted to suppress beam instability.
* C. Feng, Z. T. Zhao, Chinese Sci Bull, 2010, 55, 221-227.
** K. Bane, SLAC, NLC-Note 9, Feb. 1995.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPMW015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW028 Research on Pulse Energy Fluctuation of a Cascaded High Gain Harmonic Generation Free Electron Laser 781
 
  • Z. Wang, C. Feng, Q. Gu, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Shot to shot pulse energy fluctuation is one of the most critical issues for two-stage cascaded high gain harmonic generation (HGHG) free electron lasers (FELs). In this paper, we study the effects of various electron parameters jitters on the output pulse energy fluctuations based on Shanghai Soft X-ray free electron laser facility (SXFEL). The results show that the relative timing jitter between the electron beam and the seed laser is proved to be the most sensitive factor. The energy jitter and charge jitter make some contributions and are non-ignorable as well. Some comparisons between our facility and FERMI have been made and we hope the conclusions draw from this study would be a reference for the optimization of future seeded FEL facilities based on cascading stages of HGHG.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)