Author: Fan, K.
Paper Title Page
TUPMR039 The Development of a New High Field Injection Septum Magnet System for Main Ring of J-Parc 1337
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  We are improving the Main Ring (MR) for beam power of 750 kw which is the first goal of J-PARC. The repetition period of the fast extraction must be short to 1.3 second from the current period of 2.48 second for the improvement of the beam power. It is necessary to exchange a high field injection septum magnet which will be installed at the injection line from RCS to MR and its power supply, because the current injection septum system can not be operated with 1.3 second repetition. Since confirmed the large leakage field around current circling beam line of the injection magnet, we must improve the shielding structure which make low leakage field. We started the development of the new injection septum magnet and its power supply in 2013. It can operate with 1 Hz repetition and the low leakage field which its order is 10-4 of the gap field. The new Injection septum magnet and the new power supply were constructed in Winter of 2014. We had many improvement of the magnet and power supply. We will install the new injection septum magnet system in this summer. In this presentation, we will report the detail of the results of its performance.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR040 The Development of a New Low Field Septum Magnet System for Fast Extraction in Main Ring of J-PARC 1340
 
  • T. Shibata, K. Ishii, H. Matsumoto, N. Matsumoto, T. Sugimoto
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  The J-PARC Main Ring (MR) is being upgraded to improve its beam power to the design goal of 750 kW. One important way is to reduce the repetition period from 2.48 s to 1.3 s so that the beam power can be nearly doubled. We need to improve the septum magnets for fast extraction. We are improving the magnets and their power supplies. The present magnets which is conventional type have problem in durability of septum coil by its vibration, and large leakage field. The new magnets are eddy current type. The eddy current type does not have septum coil, but has a thin plate. We expect that there is no problem in durability, we can construct the thin septum plate, the leakage field can be reduced. The output of the present power supply are pattern current which of flat top is 10 ms width, the new one is short pulse which of one is 10 us. The short pulse consists of 1st and 3rd higher harmonic. We can expect that the flatness and reproducibility of flat top current can be improved. The calorific power can be also reduced. This paper will report the field measurement results with the eddy septum magnet systems.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY043 Parallel Particle Movement Simulation Algorithm Based on Heterogeneous Computing 2654
 
  • L.G. Zhang, L. Cao, K. Fan, J. Huang, K.F. Liu, W. Qi, J. Yang
    HUST, Wuhan, People's Republic of China
 
  Particle in cell (PIC) algorithm studies the self-consistent motion of multi-particle system by solving equations of particle dynamics, this algorithm is widely used to evaluate the nonlinear space charge effect of the high intensity or low energy beam. In order to reduce the random noise in the simulation, a huge number of particles should be traced, the process expends many computer hardware resources and a lot of computing time. Heterogeneous computing can greatly improve the efficiency of large quantities of the particle tracking by making full use of different types of computing resources. In this paper we give the algorithm which uses both CPU and GPU to trace the particles in electromagnetic field. The results show that the given algorithm increases the efficiency significantly.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMW021 Performance of a Compensation Kicker Magnet for J-PARC Main Ring 3588
 
  • T. Sugimoto, K. Ishii, H. Matsumoto, T. Shibata
    KEK, Ibaraki, Japan
  • K. Fan
    HUST, Wuhan, People's Republic of China
 
  Four lumped-type kicker magnets have been equipped in the J-PARC MR (Main Ring) to inject 8 proton bunches. To increase beam power, the bunch length will be increased up to 350 ns that will restricts the rise time of the injection kicker to be less than 250 ns. We have already developed a method to improve the rising time to 200 ns*. However, two reflection pulses are appeared at the waveform tail, which will kick the circulating bunches and induce coherent oscillation leading to beam loss. To compensate reflection pulses, we decide to install two new lumped-type kicker magnets, which are excited independently making operation flexible. A ceramic vacuum duct with TiN coating is inserted in the compensation kickers. Magnetic field measurement and coupling impedance measurement have been carried. In this paper, the results of both these measurements and performance study using proton beam will be discussed.
* T.Sugimot et.al, "Upgrade of the Injection Kicker System for J-PARC Main Ring", MOPME069, IPAC14, Dresden, Germany, 2014.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)