Author: Deile, M.
Paper Title Page
MOPOR008 Beam Induced RF Heating in LHC in 2015 602
 
  • B. Salvant, O. Aberle, M. Albert, R. Alemany-Fernandez, G. Arduini, J. Baechler, M.J. Barnes, P. Baudrenghien, O.E. Berrig, N. Biancacci, G. Bregliozzi, J.V. Campelo, F. Carra, F. Caspers, P. Chiggiato, A. Danisi, H.A. Day, M. Deile, D. Druzhkin, J.F. Esteban Müller, S. Jakobsen, J. Kuczerowski, A. Lechner, R. Losito, A. Masi, N. Minafra, E. Métral, A.A. Nosych, A. Perillo Marcone, D. Perini, S. Redaelli, F. Roncarolo, G. Rumolo, E.N. Shaposhnikova, J.A. Uythoven, C. Vollinger, A.J. Välimaa, N. Wang, M. Wendt, J. Wenninger, C. Zannini
    CERN, Geneva, Switzerland
  • M. Bozzo
    INFN Genova, Genova, Italy
  • J.F. Esteban Müller
    EPFL, Lausanne, Switzerland
  • N. Wang
    IHEP, Beijing, People's Republic of China
 
  Following the recurrent beam induced RF issues that perturbed LHC operation during LHC Run 1, a series of actions were put in place to minimize the risk that similar issues would occur in LHC Run 2: longitudinal impedance reduction campaign and/or improvement of cooling for equipment that were problematic or at the limit during Run 1, stringent constraints enforced on new equipment that would be installed in the machine, tests to control the bunch length and longitudinal distribution, additional monitoring of temperature, new monitoring tools and warning chains. This contribution reports the outcome of these actions, both successes as well as shortcomings, and details the lessons learnt for the future runs.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOR008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW021 Roman Pot Insertions in High-Intensity Beams for the CT-PPS Project at LHC 1473
 
  • M. Deile, R. Bruce, A. Mereghetti, D. Mirarchi, S. Redaelli, B. Salvachua, B. Salvant, G. Valentino
    CERN, Geneva, Switzerland
 
  The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) at the LHC IP5 aims at exploring diffractive physics at high luminosity in standard LHC fills. It is based on 14 Roman Pots (RPs), designed to host tracking and time-of-flight detectors for measuring the kinematics of leading protons. To reach the physics goals, the RPs will finally have to approach the beams to distances of 15 beam σs (i.e. ~1.5 mm) or closer. After problems with showers and impedance heating in first high-luminosity RP insertions in 2012, the LS1 of LHC was used for upgrades in view of impedance minimisation and for adding new collimators to intercept RP-induced showers. In 2015 the effectiveness of these improvements was shown by successfully inserting the RPs in all LHC beam intensity steps to a first-phase distance of ~25 σs. This contribution reviews the measurements of debris showers and impedance effects, i.e. the data from Beam Loss Monitors, beam vacuum gauges and temperature sensors. The dependences of the observables on the luminosity are shown. Extrapolations to L=1034 cm-2 s-1 and smaller distances to the beam do not indicate any fundamental problems. The plans for 2016 are outlined.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)