Author: Carrasco, M.
Paper Title Page
MOPOW049 Implementation of a Corrugated-Plate Dechirping System for GeV Electron Beam at LCLS 824
 
  • M.A. Harrison, P. Frigola, J.D. McNevin, A.Y. Murokh, M. Ruelas
    RadiaBeam Systems, Santa Monica, California, USA
  • A.M. Babbitt, M. Carrasco, A. Cedillos, R.H. Iverson, P. Krejcik, T.J. Maxwell, Ž. Oven
    SLAC, Menlo Park, California, USA
 
  Funding: This work is supported by US DOE Grant No. DE-SC0009550.
A new corrugated-plate Dechirper was recently installed in the LCLS and underwent commissioning tests to gauge its efficacy in shaping the longitudinal phase space of bunches entering the FEL. Here, we describe in detail the completed four-meter LCLS Dechirper system along with a narrative of its construction. We detail the various challenges and lessons learned in the manufacturing and assembly of this first-of-its-kind device. An outlook on future designs is presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMR006 Transport of LCLS-II 1.3 GHz Cryomodule to SLAC 2268
 
  • M.W. McGee, T.T. Arkan, T.J. Peterson, Z. Tang
    Fermilab, Batavia, Illinois, USA
  • S.R. Boo, M. Carrasco
    SLAC, Menlo Park, California, USA
  • E. Daly, N.A. Huque
    JLab, Newport News, Virginia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.
In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These include a prototype built and delivered by each Lab. Another two 3.9 GHz cryomodules will be built, tested and transported by Fermilab to SLAC. Each assembly will be transported over-the-road from Fermilab or Jefferson Lab using specific routes to SLAC. The transport system consists of a base frame, isolation fixture and upper protective truss. The strongback cryomodule lifting fixture is described along with other supporting equipment used for both over-the-road transport and local (on-site) transport at Fermilab. Initially, analysis of fragile components and stability studies will be performed in order to assess the risk associated with over-the-road transport of a fully assembled cryomodule.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMR006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)