Author: Billing, M.G.
Paper Title Page
WEPMW004 Progress in Detector Design and Installation for Measurements of Electron Cloud Trapping in Quadrupole Magnetic Fields at CesrTA 2420
 
  • J.A. Crittenden, S. Barrett, M.G. Billing, K.A. Jones, Y. Li, T.I. O'Connell, K. Olear, S. Poprocki, D. L. Rubin, J.P. Sikora
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the US National Science Foundation PHY-1416318, PHY-0734867, PHY-1002467, and the U.S. Department of Energy DE-FC02-08ER41538
Following up on our 2013 and 2014 measurements of electron cloud trapping in a quadrupole magnet with 7.4~T/m gradient in the 5.3~GeV positron storage ring at Cornell University, we have redesigned the shielded-stripline time-resolving electron detector and installed a wide-aperture quadrupole magnet at a location in the ring where its field can be compensated by a nearby quadrupole, thus allowing the first measurements of cloud trapping as a function of field gradient. The transverse acceptance of the electron detector has been tripled, allowing tests of model predictions indicating a dramatic cloud splitting effect which exhibits a threshold behavior as a function of bunch population. In addition, a vacuum chamber optimized for cloud buildup measurements using resonant microwave phenomena has been employed. We describe design considerations and modeling predictions for the upcoming 2016 data-taking run. This project is part of the CESR Test Accelerator program, which investigates performance limitations in low-emittance storage and damping rings.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)