Author: Bahrdt, J.
Paper Title Page
THPOW038 First Results from Two Novel In-vacuum Magnetic Field Measurement Devices as Built at HZB 4028
  • J. Bahrdt, H.-J. Bäcker, J. Bakos, H. Bieder, W. Frentrup, A. Gaupp, S. Gottschlich, C. Kuhn, C. Rethfeldt, M. Scheer, B. Schulz
    HZB, Berlin, Germany
  The characterization of cryogenic in vacuum permanent magnet undulators with periods less than 20 mm and correspondingly narrow gaps requires new in-vacuum measurement systems. The positioning accuracy of the HZB in-vacuum Hallprobe bench has substantially been improved (a few μm) with appropriate feedback systems. A new in-vacuum cable tray has been developed. Another system for field integral measurements, an in-vacuum moving wire, is under commissioning. Both devices are presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
THPOW039 Measurements of the Lattice Modifications for the Cryogenic Undulator CPMU17 4031
  • J. Bahrdt, D.B. Engel, W. Frentrup, P. Goslawski, P. Kuske, R. Müller, M. Ries, M. Ruprecht, A. Schälicke
    HZB, Berlin, Germany
  A 2 mrad-canted double undulator system is in preparation as the wide energy range light source for the Energy Material in-situ Laboratory EMIL at the HZB storage ring BESSY II. The cryogenic undulator CPMU-17 is the hard X-ray device of the double undulator system. The soft X-ray undulator UE-48 is of the APPLE II type. It was installed and commissioned a few months ago, whereas the CPMU-17 is under fabrication. The CPMU-17 will employ a minimum magnetic gap of 5.5mm. Including a CuNi-foil for RF-shielding and geometric tolerances the free aperture is planned to be 5.0 mm. The BESSY II lattice has been modified locally in order to cope with the small gap device. The adapted betatron functions with a shifted vertical beam waist were measured and fitted with LOCO. The new optics agrees with the predicted performance. The free aperture at the installation place of the CPMU-17 was measured with four vertical scrapers. It is compatible with the projected minimum undulator gap. Finally, the measured injection efficiency with the new EMIL optics switched on is compatible with top-up operation (injection efficiency ≥ 90 %).  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)