Author: Aulenbacher, K.
Paper Title Page
MOPOY019 Status of the First CH-Cavities for the New Superconducting CW Heavy Ion LINAC@GSI 886
SUPSS043   use link to see paper's listing under its alternate paper code  
 
  • M. Basten, M. Amberg, M. Busch, F.D. Dziuba, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  In the field of Super Heavy Elements (SHE) a superconducting (sc) continuous wave (cw) high intensity heavy ion LINAC is highly desirable. Currently a multi-stage R&D program conducted by GSI, HIM and IAP* is in progress. The baseline linac design composes a high performance ion source, a new low energy beam transport line, a (cw) upgraded High Charge State Injector (HLI), and a matching line (1.4 MeV/u) followed by the new sc-DTL LINAC for acceleration up to 7.3 MeV/u. The commissioning of the first CH cavity (Demonstrator), in a horizontal cryo module with beam is a major milestone in 2016**. The advanced demonstrator comprises constant-beta sc Crossbar-H-mode (CH) cavities operated at 217 MHz. Presently, the first two sc CH cavities of the advanced demonstrator are under construction at Research Instruments (RI), Bergisch Gladbach, Germany. A string of cavities and focusing elements build from several short CH-cavities with 8 gaps, without girders is recommended. The new design potentially reduces the overall technical risks during the fabrication and the pressure sensitivity through stiffening brackets. The present status of the first two sc cavities will be presented.
* W.Barth et al., Further R&D for a new Superconducting cw Heavy Ion LINAC@GSI, IPAC'14
**F.Dziuba et al., Measurements on the Superconducting 217 MHz CH Cavity during the Manufacturing Phase, SRF2015
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOY022 Further Upgrade Measures at New GSI cw-Linac Demonstrator Setup 892
 
  • M. Heilmann, W.A. Barth, S. Mickat, S. Yaramyshev
    GSI, Darmstadt, Germany
  • M. Amberg, M. Basten, F.D. Dziuba, H. Podlech, U. Ratzinger, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, S. Mickat, M. Miski-Oglu
    HIM, Mainz, Germany
 
  A new continuous wave (cw) linac is required to deliver high intensity heavy ion beams for Super Heavy Element (SHE) future experiments at GSI Darmstadt, Germany. The presented upgrade measures are dedicated to improve the performance of the cw demonstrator setup. The key component is a cryomodule comprising a superconducting (sc) 217 MHz Crossbar-H-mode (CH) cavity surrounded by two sc 9.3T solenoids with compensation coils. The solenoid coil is made of a Nb3Sn wire; and the compensation coils at both ends of the solenoid comprises NbTi wires. The distance between solenoid lense and CH cavity has to be optimized for ideal beam matching as well as for a minimum rest field inside the cavity below the critical magnetic field. The GSI High Charge State (HLI) injector has to deliver a heavy ion beam with an energy of 1.4 MeV/u. Longitudinal matching to the demonstrator is provided by two 108.4 MHz cw room temperature λ/4 re-buncher cavity installed behind the HLI. In this paper electromagnetic simulations of the field optimization for the solenoids and the re-buncher cavities will be presented as well as first beam experiments at the beam transport line to the demonstrator cavity.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOY022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMR005 First Results of a Turbo Generator Test for Powering the HV-Solenoids at a Relativistic Electron Cooler 1233
 
  • A. Hofmann, K. Aulenbacher, M.W. Bruker, J. Dietrich, T. Weilbach
    HIM, Mainz, Germany
  • W. Klag
    IKP, Mainz, Germany
  • V.V. Parkhomchuk, V.B. Reva
    BINP SB RAS, Novosibirsk, Russia
 
  One of the challenges in a relativistic electron cooler is the generation of high voltage exceeding 2 MV and the powering of HV-solenoids, which need a floating power supply. As replacement of the well established, but limited, methods we propose streaming gas for the power transfer. The conversion of the energy by a turbo generator enables using scalable power supply / HV-generator combinations. BINP SB RAS has proposed two possibilities to build the power supply in a modular way. In the first proposal, two cascade transformers per module should be used; the first one powers 22 small HV-solenoids, the second one generates the voltage. In order to reach the final voltage, the modules are cascaded. The cascade transformers are fed by a turbo generator, which is driven by pressurised gas. The second possibility is to use two big HV-solenoids, which are powered directly by a turbo generator. The voltage could be generated for example with a Cockcroft Walton generator. A potential candidate is the Green Energy Turbine (GET) from the company DEPRAG, Germany. At the Helmholtz-Institut Mainz, two GET were tested. In this report, we present our experience and show first results.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMR005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOW002 Current Status of the Milliampere Booster for the Mainz Energy-recovering Superconducting Accelerator 1741
 
  • R.G. Heine, K. Aulenbacher, L.M. Hein, C. Matejcek
    IKP, Mainz, Germany
 
  Funding: Work supported by German Science Foundation (DFG) under the Cluster of Excellence "PRISMA" EXC1098/2014
The Milliampere Booster (MAMBO) is the injector linac for the Mainz Energy-recovering Superconducting Accelerator MESA. The MESA facility is currently under design at the Institut für Kernphysik (KPH) at Johannes Gutenberg University of Mainz (JGU). In this paper we will present the current design status of the linac.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPOW002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMB009 Status of the Superconducting Cryomodules and Cryogenic System for the Mainz Energy-recovering Superconducting Accelerator MESA 2134
 
  • T. Stengler, K. Aulenbacher, F. Hug, D. Simon, P. Weber
    IKP, Mainz, Germany
  • F. Schlander
    ESS, Lund, Sweden
  • N. Wiehl
    Johannes Gutenberg University Mainz, Institut of Nuclear Chemistry, Mainz, Germany
 
  Funding: Work supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA"
SRF and the cryogenic system are mandatory for the operation of MESA at the Institut für Kernphysik at Johannes Gutenberg-Universität Mainz. The cryomodule production project is running for one year right now and the recent developments and measurements are presented. Further on the cryogenic concept required for the operation of MESA will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOW004 Pulse Response Measurements of NEA Photocathodes at Different Laser Wavelengths 3931
 
  • M.A. Dehn, K. Aulenbacher, V. Bechthold
    IKP, Mainz, Germany
 
  For high average electron beam currents the length of the electron bunches must match the acceptance of the accelerator. At Johannes Gutenberg-University Mainz we are able to measure the longitudinal pulse response of NEA photocathodes (GaAs) under photo excitation of different wavelengths. A time resolution of < 2 ps at a beam energy of 100 keV is achieved, furthermore, a high dynamic range allows to investigate long ranging tails of the response (longitudinal halo). This serves to identify the best possible operation mode for high current photo sources.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOW004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOY026 Recent Challenges for the 1.5 GeV MAMI-C Accelerator at JGU Mainz 4149
 
  • M. Dehn, K. Aulenbacher, H.-J. Kreidel, F. Nillius, B.S. Schlimme, V. Tioukine
    IKP, Mainz, Germany
 
  Funding: Work supported by DFG (CRC 1044) and the German federal state of Rhineland-Palatinate
The MAMI-C accelerator is a 1.5 GeV microtron cascade for up to 100 μA polarised electrons operating CW at Mainz University. Recent experiments required spin manipulations and beam energies not routinely supported by the accelerator. In particular, this required a spin orientation vertical to the accelerator plane and operation at beam energies which could not be achieved by the so far established methods. This paper describes the challenges to provide and to characterise the unusual modes of operation.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPOY026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)