Author: Aschenauer, E.C.
Paper Title Page
TUPMW038 RHIC Operation with Asymmetric Collisions in 2015 1527
 
  • C. Liu, E.C. Aschenauer, G. Atoian, M. Blaskiewicz, K.A. Brown, D. Bruno, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, X. Gu, T. Hayes, H. Huang, R.L. Hulsart, J.S. Laster, Y. Luo, Y. Makdisi, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, G. Narayan, S.K. Nayak, S. Nemesure, P.H. Pile, A. Poblaguev, V.H. Ranjbar, G. Robert-Demolaize, T. Roser, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, D. Trbojevic, N. Tsoupas, G. Wang, K. Yip, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Collisions with beams of highly asymmetric rigidities (proton-Gold and proton-Aluminum) were provided for the RHIC physics programs in 2015. Magnets were moved for the first time in RHIC prior to the run to accommodate the asymmetric beam trajectories during acceleration and at store. A special ramping scheme was designed to keep the revolution frequencies of the beams in the two rings equal. The unique operational experience of the asymmetric run will be reviewed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEZA01 RHIC Performance with Stochastic Cooling for Ions and Head-on Beam-beam Compensation for Protons 2055
 
  • W. Fischer, J.G. Alessi, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, R. Connolly, M.R. Costanzo, T. D'Ottavio, K.A. Drees, A.V. Fedotov, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, Y. Makdisi, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, M. Okamura, S. Perez, A.I. Pikin, P.H. Pile, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, B. Van Kuik, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang
    BNL, Upton, Long Island, New York, USA
  • M. Bai, Y. Dutheil
    FZJ, Jülich, Germany
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
The Relativistic Heavy Ion Collider (RHIC) has two main operating modes with heavy ions and polarized protons respectively. In addition to a continuous increase in the bunch intensity in all modes, two major new systems were completed recently mitigating the main luminosity limit and leading to significant performance improvements. For heavy ion operation stochastic cooling mitigates the effects of intrabeam scattering, and for polarized proton operation head-on beam-beam compensation mitigated the beam-beam effect. We present the performance increases with these upgrades for heavy ions and polarized protons, as well as an overview of all operating modes past and planned.
 
slides icon Slides WEZA01 [12.687 MB]  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEZA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW027 The ERL-based Design of Electron-Hadron Collider eRHIC 2482
 
  • V. Ptitsyn, E.C. Aschenauer, I. Ben-Zvi, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, J.C. Brutus, O.V. Chubar, A.V. Fedotov, D.M. Gassner, H. Hahn, Y. Hao, A. Hershcovitch, H. Huang, W.A. Jackson, Y.C. Jing, R.F. Lambiase, V. Litvinenko, C. Liu, Y. Luo, G.J. Mahler, B. Martin, G.T. McIntyre, W. Meng, F. Méot, T.A. Miller, M.G. Minty, B. Parker, I. Pinayev, V.H. Ranjbar, T. Roser, J. Skaritka, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, E. Wang, G. Wang, H. Witte, Q. Wu, C. Xu, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Recent developments of the ERL-based design of future high luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design (L ~ 1033 cm-2 s-1) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design (L > 1034 cm-2 s-1) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOY057 The 2015 eRHIC Ring-Ring Design 3126
 
  • C. Montag, E.C. Aschenauer, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, A.V. Fedotov, W. Fischer, V. Litvinenko, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Tepikian, D. Trbojevic, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To reduce the technical risk of the future electron-ion collider eRHIC currently under study at BNL, the ring-ring scheme has been revisited over the summer of 2015. The goal of this study was a design that covers the full center-of-mass energy range from 32 to 141 GeV with an initial luminosity around 1033 cm-2 sec-1, upgradeable to 1034 cm-2 sec-1 later on. In this presentation the baseline design will be presented, and future upgrades will be discussed.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPOY057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)