Author: Appleby, R.B.
Paper Title Page
THPMB053 nuSTORM FFAG Decay Ring 3369
 
  • J.-B. Lagrange, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R.B. Appleby, J.M. Garland, H.L. Owen, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.D. Bross, A. Liu
    Fermilab, Batavia, Illinois, USA
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The neutrino beam produced from muons decaying in a storage ring would be an ideal tool for precise neutrino cross section measurements and search for sterile neutrinos due to its precisely known flavour content and spectrum. In the proposed nuSTORM facility pions would be directly injected into a racetrack storage ring, where circulating muon beam would be captured. The storage ring has two options: a FODO solution with large aperture quadrupoles and a racetrack FFAG (Fixed Field Alternating Gradient) using the recent developments in FFAGs. Machine parameters, linear optics design and beam dynamics are discussed in this paper.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMB054 FFAG Beam Line for nuPIL - Neutrinos from PIon Beam Line 3372
 
  • J.-B. Lagrange, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R.B. Appleby, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.D. Bross, A. Liu
    Fermilab, Batavia, Illinois, USA
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  The Long Baseline Neutrino Facilities (LBNF) program aims to deliver a neutrino beam for the Deep Underground Neutrino Experiment (DUNE). The current baseline for LBNF is a conventional magnetic horn and decay pipe system. Neutrinos from PIon beam Line (nuPIL) is a part of the optimization effort to optimize the LBNF. It consists of a pion beam line after the horn to clean the beam of high energy protons and wrong-sign pions before transporting them into a decay beam line, where instrumentation could be implemented. This paper focuses on the FFAG solution for this pion beam line. The resulting neutrino flux is also presented.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-THPMB054  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOW037 Developments in the CLARA FEL Test Facility Accelerator Design and Simulations 797
 
  • P.H. Williams, D. Angal-Kalinin, A.D. Brynes, J.A. Clarke, F. Jackson, J.K. Jones, J.W. McKenzie, B.L. Militsyn, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • B. Kyle
    University of Manchester, Manchester, United Kingdom
 
  We present recent developments in the accelerator design of CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. In order to prioritise FEL schemes requiring the shortest electron bunches, the layout has changed significantly to enable compression at higher energy. Four proposed modes of operation are defined and tracked from cathode to FEL using ASTRA. Supplementing these baseline mode definitions with CSR-enabled codes (such as CSRTRACK) where appropriate is in progress. The FEL layout is re-optimised to include shorter undulators with delay chicanes between each radiator.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-MOPOW037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMW007 Impact of Long Range Beam-Beam Effects on Intensity and Luminosity Lifetimes from the 2015 LHC Run 1422
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • D. Banfi, C. Tambasco
    EPFL, Lausanne, Switzerland
  • J. Barranco, R. Bruce, X. Buffat, T. Pieloni, M. Pojer, B. Salvachua, G. Trad
    CERN, Geneva, Switzerland
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: Research supported by the High Luminosity LHC project
Luminosity is one of the key parameters that determines the performance of colliding beams in the Large Hadron Collider (LHC). Luminosity can therefore be used to quantify the impact of beam-beam interactions on the beam lifetimes and emittances. The High Luminosity Large Hadron Collider (HL-LHC) project aims to reach higher luminosities, approximately a factor of 7 larger than the nominal LHC at peak luminosity without crab cavities. Higher luminosities are achieved by increasing the bunch populations and reducing the transverse beam sizes. This results in stronger beam-beam effects. Here the LHC luminosity and beam intensity decay rates are analysed as a function of reducing beam separation with the aim of characterising the impact of beam-beam effects on the luminosity and beam lifetime. The analysis and results are discussed with possible application to the HL-LHC upgrade.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-TUPMW007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW030 Cleaning Performance of the Collimation System of the High Luminosity Large Hadron Collider 2494
 
  • D. Mirarchi, A. Bertarelli, R. Bruce, F. Cerutti, P.D. Hermes, A. Lechner, A. Mereghetti, E. Quaranta, S. Redaelli
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • H. Garcia Morales, R. Kwee-Hinzmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  Different upgrades of the LHC will be carried out in the framework of the High Luminosity project (HL-LHC), where the total stored energy in the machine will increase up to about 700 MJ. This unprecedented stored energy poses serious challenges for the collimation system, which was designed to handle safely up to about 360 MJ. In this paper the baseline collimation layout for HL-LHC is described, with main focus on upgrades related to the cleaning of halo and physics debris, and its expected performance is discussed. The main upgrade items include the presence of new collimators in the dispersion suppressor of the betatron cleaning insertion installed between two 11 T dipoles, and two additional collimators for an improved local protection of triplet magnets. Thus, optimized settings for the entire and upgraded collimation chain were conceived and are shown here together with the resulting cleaning performance. Moreover, the cleaning performance taking into account crab cavities it is also discussed.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW036 MERLIN Cleaning Studies with Advanced Collimator Materials for HL-LHC 2514
 
  • A. Valloni, R. Bruce, A. Mereghetti, E. Quaranta, S. Redaelli
    CERN, Geneva, Switzerland
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • J. Molson
    LAL, Orsay, France
  • H. Rafique
    University of Huddersfield, Huddersfield, United Kingdom
 
  The challenges of the High-Luminosity upgrade of the Large Hadron Collider require improving the beam collimation system. An intense R&D program has started at CERN to explore novel materials for new collimator jaws to improve robustness and reduce impedance. Particle tracking simulations of collimation efficiency are performed using the code MERLIN which has been extended to include new materials based on composites. After presenting two different implementations of composite materials tested in MERLIN, we present simulation studies with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMW037 MERLIN Simulations of the LHC Collimation System with 6.5 TeV Beams 2518
 
  • A. Valloni
    Rome University La Sapienza, Roma, Italy
  • R.B. Appleby, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R. Bruce, A. Mereghetti, S. Redaelli
    CERN, Geneva, Switzerland
  • J. Molson
    LAL, Orsay, France
  • H. Rafique
    University of Huddersfield, Huddersfield, United Kingdom
 
  The accelerator physics code MERLIN has been extended in many areas to make detailed studies of the LHC collima- tion system and calculate loss maps from beam halo losses. Large scale tracking simulations have been produced for the 2015 run configuration at 6.5 TeV. We present results of cleaning inefficiency simulations of the LHC's multi-stage collimation system along with a detailed comparison be- tween MERLIN, SixTrack, and measured beam losses.  
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMW037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMY027 Feasibility Study of Plasma Wakefield Acceleration at the CLARA Front End Facility 2617
 
  • K. Hanahoe, R.B. Appleby, Y. M. Li, T.H. Pacey, G.X. Xia
    UMAN, Manchester, United Kingdom
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
  • B. Kyle
    University of Manchester, Manchester, United Kingdom
  • O. Mete Apsimon
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.D.A. Smith
    Tech-X, Boulder, Colorado, USA
 
  Funding: Cockcroft Institute Core Grant and STFC
Plasma wakefield acceleration has been proposed at the CLARA Front End (FE) facility at Daresbury Laboratory. The initial phase of the experiment will acceleration of the tail of a single electron bunch, and the follow-up experiment will study preserving a high quality beam based on a two-bunch acceleration scenario. In this paper, a concept for the initial experiment is outlined and detailed simulation results are presented.
 
DOI • reference for this paper ※ DOI:10.18429/JACoW-IPAC2016-WEPMY027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)