Keyword: dumping
Paper Title Other Keywords Page
TUPEA073 Performances of VORPAL-GPU Slab-symmetric DLW simulation, wakefield, factory, electron 1298
 
  • F. Lemery, K. Duffin, N. Karonis, D. Mihalcea, P. Piot, J. Winans
    Northern Illinois University, DeKalb, Illinois, USA
  • P.J. Mullowney, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • P. Piot
    Fermilab, Batavia, USA
 
  Funding: HDTRA1-10-1-0051, DOE(Grant No will be specified later)
GPU-based computing has gained popularity in recent years due to its growing software support and greater processing capabilities than its CPU counterpart.  GPU computing was recently added in the finite-difference time-domain program VORPAL. In this paper we carry electromagnetic simulations and optimization of a flat beam passing through a slab-symmetric dielectric-lined waveguide (DLW). We use this simulation model to explore the scaling of the GPU version of VORPAL on a new TOP1000-grade hybrid GPU/CPU computer cluster available at Northern Illinois University.
 
 
THPEA041 Performance Improvements of the SPS Internal Beam Dump for the HL-LHC Beam kicker, vacuum, proton, synchrotron 3231
 
  • F.M. Velotti, O. Aberle, C. Bracco, E. Carlier, P. Chiggiato, J.A. Ferreira Somoza, B. Goddard, M. Meddahi, V. Senaj, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The SPS internal beam dump has been designed for beam specifications well below the HL-LHC ones, and for modes of operation which may not be adequate for the HL-LHC era. The present system suffers from several limitations in the allowed intensity and energy range, and its vacuum performance affects nearby high-voltage kicker systems. In this report the limitations of the internal beam dump system are reviewed, and the possible improvements compared. Preliminary upgrade proposals are presented, taking into consideration the expected operational HL-LHC parameters.