Paper | Title | Page |
---|---|---|
MOPWO080 | GPU-optimized Code for Long-term Simulations of Beam-beam Effects in Colliders | 1064 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. We report on the development of the new code for long-term simulation of beam-beam effects in particle colliders. The underlying physical model relies on a matrix-based arbitrary-order symplectic particle tracking for beam transport and the Bassetti-Erskine approximation for beam-beam interaction. The computations are accelerated through a parallel implementation on a hybrid GPU/CPU platform. With the new code, a previously computationally prohibitive long-term simulations become tractable. We use the new code to model the proposed medium-energy electron-ion collider (MEIC) at Jefferson Lab. |
||
WEOAB202 | JEMMRLA - Electron Model of a Muon RLA with Multi-pass Arcs | 2085 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. We propose a demonstration experiment for a new concept of a ‘dogbone’ RLA with multi-pass return arcs – JEMMRLA (Jlab Electron Model of Muon RLA). Such an RLA with linear-field multi-pass arcs was introduced for rapid acceleration of muons for the next generation of Muon Facilities. It allows for efficient use of expensive RF while the multi-pass arc design based on linear combined-function magnets exhibits a number of advantages over separate-arc or pulsed-arc designs. Here we describe a test of this concept by scaling a GeV scale muon design for electrons. Scaling muon momenta by the muon-to-electron mass ratio leads to a scheme, in which a 4.5 MeV electron beam is injected in the middle of a 3 MeV/pass linac with two double-pass return arcs and is accelerated to 18 MeV in 4.5 passes. All spatial dimensions including the orbit distortion are scaled by a factor of 7.5, which arises from scaling the 200 MHz muon RF to a readily available 1.5 GHz. The hardware requirements are not very demanding making it straightforward to implement. Such an RLA may have applications going beyond muon acceleration: in medical isotope production, radiation cancer therapy and homeland security. |
||
![]() |
Slides WEOAB202 [1.485 MB] | |