Paper |
Title |
Page |
WEPEA042 |
The PS Upgrade Programme: Recent Advances |
2594 |
|
- S.S. Gilardoni, S. Bart Pedersen, C. Bertone, N. Biancacci, A. Blas, D. Bodart, J. Borburgh, P. Chiggiato, H. Damerau, S. Damjanovic, J.D. Devine, T. Dobers, M. Gourber-Pace, S. Hancock, A. Huschauer, G. Iadarola, L.A. Lopez Hernandez, A. Masi, S. Mataguez, E. Métral, M.M. Paoluzzi, S. Persichelli, S. Pittet, S. Roesler, C. Rossi, G. Rumolo, B. Salvant, R. Steerenberg, G. Sterbini, L. Ventura, J. Vollaire, R. Wasef, C. Yin Vallgren
CERN, Geneva, Switzerland
- M. Migliorati
University of Rome "La Sapienza", Rome, Italy
|
|
|
The LHC Injectors Upgrade project (LIU) has been initiated to improve the performances of the existing injector complex at CERN to match the future requirements of the HL-LHC. In this framework, the Proton Synchrotron (PS) will undergo fundamental changes for many of its main systems: the injection energy will be increased to reduce space-charge effects, the transverse damper will be improved to cope with transverse instabilities the RF systems will be upgraded to accelerate higher beam intensity and brightness. These hardware improvements are triggered by a series of studies meant to identify the most critical performance bottlenecks, like space charge, impedances, longitudinal and transverse instabilities, as well as electron-cloud. Additionally, alternative production schemes for the LHC-type beams have been proposed and implemented to circumvent some of the present limitations. A summary of the most recent advances of the studies, as well as the proposed hardware improvements is given.
|
|
|
WEPEA060 |
Plans for the Upgrade of CERN's Heavy Ion Complex |
2645 |
|
- D. Manglunki, M. E. Angoletta, H. Bartosik, A. Blas, D. Bodart, M.A. Bodendorfer, T. Bohl, J. Borburgh, E. Carlier, J.-M. Cravero, H. Damerau, L. Ducimetière, A. Findlay, R. Garoby, S.S. Gilardoni, B. Goddard, S. Hancock, E.B. Holzer, J.M. Jowett, T. Kramer, D. Kuchler, A.M. Lombardi, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille
CERN, Geneva, Switzerland
|
|
|
To reach a luminosity higher than 6×1027 Hz/cm2 for Pb-Pb collisions, as expected by the ALICE experiment after its upgrade during the 2nd Long LHC Shutdown (LS2), several upgrades will have to be performed in the CERN accelerator complex, from the source to the LHC itself. This paper first details the present limitations and then describes the strategy for the different machines in the ion injector chain. Both filling schemes and possible hardware upgrades are discussed.
|
|
|
WEPEA061 |
The First LHC p-Pb run: Performance of the Heavy Ion Production Complex |
2648 |
|
- D. Manglunki, M. E. Angoletta, H. Bartosik, G. Bellodi, A. Blas, M.A. Bodendorfer, T. Bohl, C. Carli, E. Carlier, S. Cettour Cave, K. Cornelis, H. Damerau, A. Findlay, S.S. Gilardoni, S. Hancock, J.M. Jowett, D. Kuchler, M. O'Neil, Y. Papaphilippou, S. Pasinelli, R. Scrivens, G. Tranquille, B. Vandorpe, U. Wehrle, J. Wenninger
CERN, Geneva, Switzerland
|
|
|
TThe first LHC proton-ion run took place in January-February 2013; it was the first extension to the collider programme, as this mode was not included in the design report. This paper presents the performance of the heavy ion and proton production complex, and details the issues encountered, in particular the creation of the same bunch pattern in both beams.
|
|
|
WEPME011 |
Beam Tests and Plans for the CERN PS Transverse Damper System |
2947 |
|
- A. Blas, S.S. Gilardoni, G. Sterbini
CERN, Geneva, Switzerland
|
|
|
The CERN Proton Synchrotron (CPS) has been running without any transverse damping equipment since 1998, thanks to the stabilizing effect of the linear coupling applied between horizontal and vertical planes. Lately, the demand for an active damper strongly emerged for two main reasons: to avoid restrictions as imposed on the betatron tune settings by the linear coupling and to cure instabilities appearing with high intensity beams, especially at the extraction energy. Late in 2012, two electronic prototype units, newly developed for the CPS one-turn-feedback, were programmed with a firmware designed to satisfy the transverse feedback (TFB) requirements in both planes. The main achievements were to automatically adapt the loop delay to the particles' time-of-flight variation within a nanosecond precision and to compensate the changing betatron phase advance between pick-up and kicker during the entire accelerating cycle. With the power equipment limited to the modest bandwidth of 23 MHz and 2 x 800 W per plane, encouraging results were obtained such as fast damping of injection oscillations caused by injection errors, reduction of beam losses along the cycle and damping of instabilities at all CPS energies.
|
|
|
THPWO078 |
Status of the Upgrade of the CERN PS Booster |
3939 |
|
- K. Hanke, O. Aberle, M. E. Angoletta, W. Bartmann, S. Bartolome, E. Benedetto, C. Bertone, A. Blas, P. Bonnal, J. Borburgh, D. Bozzini, A.C. Butterworth, C. Carli, E. Carlier, J.R.T. Cole, P. Dahlen, M. Delonca, T. Dobers, A. Findlay, R. Froeschl, J. Hansen, D. Hay, S. Jensen, J.-M. Lacroix, P. Le Roux, L.A. Lopez Hernandez, C. Maglioni, A. Masi, G.W. Mason, S.J. Mathot, B. Mikulec, Y. Muttoni, A. Newborough, D. Nisbet, S. Olek, M.M. Paoluzzi, A. Perillo-Marcone, S. Pittet, B. Puccio, V. Raginel, B. Riffaud, I. Ruehl, A. Sarrió Martínez, J. Tan, B. Todd, V. Venturi, W.J.M. Weterings
CERN, Geneva, Switzerland
|
|
|
The CERN PS Booster (PSB) is presently undergoing an ambitious consolidation and upgrade program within the frame of the LHC Injectors Upgrade (LIU) project. This program comprises a new injection scheme for H− ions from CERN’s new Linac4, the replacement of the main RF systems and an energy upgrade of the PSB rings from 1.4 to 2.0 GeV which includes the replacement of the main magnet power supply as well as the upgrade of the extraction equipment. This paper describes the status and plans of this work program.
|
|
|