WEOAA —  Synchrotron Light Sources and FELs   (07-Sep-11   09:30—10:30)
Chair: L. Palumbo, Rome University La Sapienza, Roma, Italy
Paper Title Page
WEOAA01 The ThomX Project 1903
 
  • A. Variola
    LAL, Orsay, France
 
  Funding: Work supported by the EQUIPEX program, the Ile de France region, CNRS-IN2P3 and Université Paris Sud XI
ThomX is a Compton source project in the range of the hard X rays (40 / 90 keV). The machine is composed of an injector Linac and a storage ring where an electron bunch collides with a laser pulse accumulated in a Fabry-Perot resonator. The final goal is to provide an X-rays average flux of 1011/1013 ph/s. The emitted flux will be characterized by a dedicated X-ray line. Different users are partners in the ThomX project, especially in the area of medical science and cultural heritage. Their main goal will be the transfer of all the experimental techniques developed on big synchrotron rings to these more compact and flexible machines. The project ThomX has recently been funded and will be located on the Orsay University campus. In this article the project and its associated scientific interest are presented.
 
slides icon Slides WEOAA01 [5.947 MB]  
 
WEOAA02 Performance of 2 MeV, 2 kA, 200 ns Linear Induction Accelerator with Ultra Low Beam Emittance for X-Ray Flash Radiography 1906
 
  • P.V. Logachev, A. Akimov, P.A. Bak, M.A. Batazova, A.M. Batrakov, Y.M. Boimelshtain, D. Bolkhovityanov, A.A. Eliseev, F.A. Emanov, G.A. Fatkin, A.A. Korepanov, Ya.V. Kulenko, G.I. Kuznetsov, I.V. Nikolaev, A.V. Ottmar, A.A. Pachkov, A. Panov, O.A. Pavlov, D.A. Starostenko
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: The minestry of education and science of Russian Federation R&D contracts:P2493 and 14.740.11.0160
LIA-2 linear induction accelerator is designed in Budker INP as an injector for full scale 20 MeV linear induction accelerator which can be used for X-ray flash radiography with high space resolution. This machine utilizes ultra high vacuum, precise beam optics design based on low temperature dispenser cathode of 190 mm in diameter. The results of LIA-2 commissioning are presented. The designed value of beam emittance (120 π mm•mrad, not normalized) is achieved at 2 MeV and 2 kA of electron beam energy and current.
 
slides icon Slides WEOAA02 [7.094 MB]  
 
WEOAA03 Approach to a Start-to-end Simulation of 2-loop Compact Energy Recovery Linac 1909
 
  • M. Shimada, K. Harada, Y. Kobayashi, T. Miyajima, N. Nakamura, S. Sakanaka
    KEK, Ibaraki, Japan
  • R. Hajima
    JAEA, Ibaraki-ken, Japan
 
  Transport of an extreme low emittance electron beam is critical issue in an energy recovery linac. In particlar, the space charge effect on an electron bunch in the injector with lower than 5 - 10 MeV induces a large emittance growth. To suppress the emittance growth by such as an optimization of the solenoid magnets, a nonlinear effect should be clarified by a three dimensional tracking simulation. The cons is that it consumes a enormous simulation time. The approach is not suitable for a double loop circulation because the simulation time depends on the transport length. Therefore the beam dynamics and optics are calculated by a start-to-end (S2E) simulation, in which the simulation code is switched after the full acceleration. We used 'general particle tracking (GPT)' for injector electron beam and 'elegant' for a circulator electron beam.  
slides icon Slides WEOAA03 [3.951 MB]