THOAB —  Applications of Accelerators   (08-Sep-11   09:30—10:30)
Chair: M. Lindroos, ESS, Lund, Sweden
Paper Title Page
THOAB01 Accelerator-driven Subcritical Molten-salt-fueled Reactors 2868
 
  • R.P. Johnson
    Muons, Inc, Batavia, USA
  • C. Bowman
    ADNA, Los Alamos, New Mexico, USA
 
  Reactors built using solid fissile materials sealed in fuel rods have an inherent safety problem in that volatile radioactive materials in the rods are accumulated and can be released in dangerous amounts. Accelerator parameters for subcritical reactors that have been considered in recent studies have primarily been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium-burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salts was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work as well or better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts.  
slides icon Slides THOAB01 [5.723 MB]  
 
THOAB02 Metal Nano-particle Synthesis by using Proton Beam 2871
 
  • M.H. Jung, K. R. Kim, S.J. Ra
    KAERI, Daejon, Republic of Korea
 
  Funding: This work was conducted as a part of the Proton Engineering Frontier Project supported by the Ministry of Education Science & Technology of Korea Government.
Many scientists have studied metal nano-particles for newly known optical, electronic and chemical properties. The unique properties of nano-particles have a tendency to relate the particle size and shape. Electron beam have been used for the nano-particle synthesizing and many results were published. Study of nano-particles synthesize by using proton beam is still in the early stages however study for gold, silver, platinum and cobalt nano-particle was in progress. 100 MeV proton linear accelerator, which is by Proton Engineering Frontier Project, Korea Atomic Energy Research Institute, is scheduled to be completed by 2012. Study of nano-particle synthesize by using proton beam will become active due to the completion of 100 MeV proton accelerator and it can be mass-produced because of the large current beam. Finally, industrial applications could become possible. The mechanism of metal nano-particles synthesizing by proton beam irradiation was not completely known. In this study, we investigated the changes of size and shape for metal nano-particle depending on the condition of proton beam irradiation, and concentration of additives by TEM and UV/Vis spectrophotometer.
 
slides icon Slides THOAB02 [9.791 MB]  
 
THOAB03 Commissioning of the Ion Beam Gantry at HIT 2874
 
  • M. Galonska, R. Cee, Th. Haberer, K. Höppner, A. Peters, S. Scheloske, T. Winkelmann
    HIT, Heidelberg, Germany
 
  The Heidelberg Ion Beam Therapy Facility (HIT) is the first dedicated proton and carbon cancer therapy facility in Europe. It uses a full 3D intensity controlled raster scanning dose delivering method. The ion energy ranges from ca. 50 to 430 MeV/u corresponding to ion penetration depths of 20 to 300 mm in water. The HIT facility comprises the only heavy ion gantry worldwide designed for the beam transport of beams demanding a magnetic rigidity from 1 to 6.6 Tm. The gantry rotation of 360° enables beam scanning patient treatment from arbitrary directions. The libraries of carbon and proton pencil beams at the gantry are now offered with the whole variety of ion beam properties, i.e. 255 energy steps, 4 beam foci, 360°, and 10 intensities (106-1010/spill). The beam has to be adjusted only for a fraction of possible combinations of energy, focus, and gantry angle. These are taken as base points for a calculation of an overall number of about 37,000 different set values per ion type, and one intensity step according to the data supply model. This paper gives an outline on the practical concepts and results of adjusting the required beam properties independent of the gantry angle.  
slides icon Slides THOAB03 [4.526 MB]