Keyword: rf-amplifier
Paper Title Other Keywords Page
MOPC128 16 kW Upgrade of the 1.3 GHz ELBE RF-system (CW) with Solid State Amplifiers klystron, linac, cavity, superconducting-cavity 379
 
  • H. Büttig, A. Arnold, A. Büchner, M. Justus, M. Kuntzsch, U. Lehnert, P. Michel, R. Schurig, G.S. Staats, J. Teichert
    HZDR, Dresden, Germany
 
  The superconducting CW- LINAC of the radiation source ELBE is in permanent operation since May 2001. In 2011 an upgrade program of ELBE is in progress to support additional applications. One part of the program is to double the RF-power per cavity to at least 16 kW. We first tested a 30 kW IOT-based amplifier (Bruker /CPI) at a cavity, later two 10 kW solid state amplifiers in parallel. The best solution found is based on 10 kW Solid State Power Amplifiers (SSPA) developed by Bruker BioSpin. The poster gives an overview on the status, the activities around this RF-upgrade project and the technical specification of the “turnkey” SSPA , designed for 10 kW, 1.3 GHz and full CW-operation.  
 
MOPC130 High Power Solid State RF Amplifier Proposal for Iran Light Source Facility (ILSF) cavity, booster, storage-ring, simulation 385
 
  • R. safian
    IPM, Tehran, Iran
  • M. Jafarzadeh
    ILSF, Tehran, Iran
 
  Solid state RF amplifiers are being considered for an increasing number of accelerator applications. Their capabilities extend from a few kW of power to several hundred kilo watts and from frequencies less than 100 MHz to above 1 GHz. This paper describes the proposed general scheme for the high power solid state RF generator of the Iran light source facility (ILSF). The maximum expected power of the generator is 200 KW which is used for driving the storage ring cavities. Similar RF generator with lower output power can be used for driving the booster cavities.  
 
MOPC137 Medium Power 352 MHz Solid State Pulsed RF Amplifiers for the CERN Linac4 Project controls, linac, cavity, shielding 400
 
  • J.C. Broere, J. Marques Balula
    CERN, Geneva, Switzerland
  • Y. Gomez
    LPSC, Grenoble Cedex, France
  • M. Rossi
    DBE, Padova, Italy
 
  Economic, modular and highly linear pulsed RF amplifiers have recently been developed to be used for the three Buncher cavities in the CERN Linac4. The amplifiers are water cooled and can provide up to 33 kW pulsed RF power, 1.5 msec pulse length and 50 Hz repetition rate. Furthermore a 60 kWatt unit is under construction to provide the required RF Power for the Debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6th generation LDMOS technology. For integration into the CERN control environment the amplifiers have an internal industrial controller, which will provide easy control and extended diagnostic functions. This paper describes the construction, performance, including linearity, phase stability and EMC compliance tests.