Keyword: higher-order-mode
Paper Title Other Keywords Page
MOOCA01 Production and Testing Experience with the SRF Cavities for the CEBAF 12 GeV Upgrade cavity, cryomodule, HOM, SRF 26
 
  • A. Burrill, G.K. Davis, F. Marhauser, C.E. Reece, A.V. Reilly, M. Stirbet
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The CEBAF recirculating CW electron linear accelerator at Jefferson Lab is presently undergoing a major upgrade to 12 GeV. This project includes the fabrication, preparation, and testing of 80 new 7-cell SRF cavities, followed by their incorporation into ten new cryomodules for subsequent testing and installation. In order to maximize the cavity Q over the full operable dynamic range in CEBAF (as high as 25 MV/m), the decision was taken to apply a streamlined preparation process that includes a final light temperature-controlled electropolish of the rf surface over the vendor-provided bulk BCP etch. Cavity processing work began at JLab in September 2010 and will continue through December 2011. The excellent performance results are exceeding project requirements and indicate a fabrication and preparation process that is stable and well controlled. The cavity production and performance experience to date will be summarized and lessons learned reported to the community.
 
slides icon Slides MOOCA01 [4.376 MB]  
 
WEPC093 Various Approaches to Electromagnetic Field Simulations for RF Cavities simulation, cavity, impedance, HOM 2226
 
  • C. Liu, W. Ackermann, W.F.O. Müller, T. Weiland
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by BMBF under contract 05H09RD5
In the Superconducting Proton Linac (SPL) cavity, there is not only the fundamental mode for the particle acceleration but also many higher order modes (HOMs), which can lead to particle beam instabilities. This is very dangerous for SPL cavity. Therefore it is necessary to simulate the electromagnetic field in the SPL cavity, so that the field distribution and the shunt impedance for every higher order mode can be precisely calculated. At TEMF this research work can be done in three different ways: field simulation with hexahedron mesh in frequency domain, field simulation with hexahedron mesh in time domain and field simulation with tetrahedral mesh and higher order curvilinear elements. Finally the HOM coupler will be considered for the effective damping of higher order modes in the SPL cavity.
 
 
WEPC097 A Concatenation Scheme for the Computation of Beam Excited Higher Order Mode Port Signals cavity, HOM, wakefield, coupling 2238
 
  • T. Flisgen, H.-W. Glock, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  Ongoing studies investigate in how far higher order mode (HOM) port signals of superconducting RF cavities can be used for machine and beam diagnostics. Apart from experiments e.g. at the FLASH facility at DESY in Hamburg, numerical modelling is needed for the prediction of HOM coupler signals. For this purpose, the RF properties of the entire accelerating module have to be taken into account, since higher order modes can propagate along the cavity chain. A discretization of the full chain, followed by a wake field simulation is only feasible with powerful and expensive cluster computers. Instead, an element wise wake field simulation of sub-sections of the chain, followed by a suitable concatenation scheme can be performed on standard hardware assuming the beam to be sufficiently stiff. In this paper a concatenation scheme for the computation of beam excited HOM port signals is derived as a generalization of the Coupled S-Parameter scheme CSC. Furthermore, the validity of the method is shown for a sample structure.  
 
WEPC099 Coupler Design and Optimization by GPU-Accelerated DG-FEM HOM, simulation, scattering, linac 2244
 
  • C. Potratz, H.-W. Glock, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  The numerical optimization of rf-components like couplers is a common task during the design phase of particle accelerators. Typically, these optimizations involve the simulation of a multitude of very similar structures with minor geometric variations. Nevertheless, this process is in its entire extend rather demanding on both the invested time and hardware budget. With recent advancements in the field of numerical electromagnetic field simulation and consumer graphic processors, an interesting alternative for the time-consuming simulation part of the optimization is available. In this contribution we show, how the Discontinuous Galerkin FEM method in conjunction with consumer graphic cards can be used to build moderately prized cluster solutions for the parallel simulation of rf-components. The contribution will mainly focus on, but is not limited to, Higher Order Mode couplers as a typical application example, where the DG-FEM method accelerated by a graphic processor might be used to significantly reduce the overall time necessary for the optimization.