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Abstract

Ongoing studies [1, 2] investigate in how far higher order
mode (HOM) port signals of superconducting RF cavities
can be used for machine and beam diagnostics. Apart from
experiments e.g. at the FLASH facility at DESY in Ham-
burg, numerical modelling is needed for the prediction of
HOM coupler signals. For this purpose, the RF properties
of the entire accelerating module have to be taken into ac-
count, since higher order modes can propagate along the
cavity chain. A discretization of the full chain, followed
by a wake field simulation is only feasible with powerful
and expensive cluster computers. Instead, an element-wise
wake field simulation of subsections of the chain, followed
by a suitable concatenation scheme can be performed on
standard hardware assuming the beam to be sufficiently
stiff. In this paper a concatenation scheme for the compu-
tation of beam excited HOM port signals is derived as a ge-
neralization of the Coupled S-Parameter scheme CSC [3].
Furthermore, the validity of the method is shown for a sam-
ple structure.

INTRODUCTION

Running investigations [1, 2] on beam excited higher
order mode (HOM) port signals of the module ACC39,
mounted in the free-electron laser FLASH/DESY, evaluate
the usability of these signals for diagnostic purposes. Be-
side of measurements of the HOM port signals with fast os-
cilloscopes and spectrum analyzers, computer simulations
are essential to understand the excitation process and the
dependency of the shape of the HOM signals on beam and
machine parameters.

The characterization [4] of ACC39 has shown that higher
order modes are not localized in the individual cavities,
but are able to propagate through the entire chain of four
cavities, incorporated by ACC39. The calculation of beam
driven port signals of such large and complex structures is
a computationally expensive task, which may be tackled by
using massive parallel computer codes in combination with
cluster computers (see e.g. [5]). As an alternative, complex
accelerating structures can be decomposed into segments.
The beam excited port signals of the segments are com-
puted individually by means of transient wake field solvers
and are concatenated by the presented scheme to obtain the
beam driven port signals of the full structure.
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THE CONCATENATION SCHEME

The proposed method, which is denoted as Coupled
Transient Calculations (CTC), generalizes the well-
established CSC method [3]. In comparison to CSC,
the CTC formalism allows for segments having inter-
nal sources e.g. field exciting beams of charged parti-
cles traversing these segments. Note, that the presented
concatenation scheme is restricted to excitation problems,
where the beam is stiff such that field equations and equa-
tions of motion are decoupled. Furthermore, the structure
under consideration has to be made of linear materials.

Splitting and Description of Segments

The first step is the splitting of the full structure into
smaller segments, whose numerical treatment is less com-
putationally demanding (see example in Fig. 1). In princi-

Figure 1: Splitting of a system of two coupled cylindrical
cavities with schematic beam (red) and incident and scat-
tered waves at matched waveguide ports (black arrows).

ple, on the cut planes an infinite number of waveguide port
modes has to be considered for the orthogonal expansion.
However, if the frequency interval on which the structure is
examined is finite, it is sufficient to consider a finite number
of port modes. It is favourable to split the structure at re-
gions of constant cross section to reduce the number of port
modes, required for the expansion. The signals scattered in
the waveguide port modes of the k-th segment, denoted in
frequency domain as �bk(s) can be expressed as

�bk(s) = Sk(s)�ak(s) + �yk(s). (1)

Here s = jω specifies the angular frequency and Sk(s)
the scattering matrix. �ak(s) are the amplitudes of the
waves which are incident to the waveguide ports. �yk(s)
denotes the beam driven signals scattered in the waveguide
ports, presuming the waves �ak(s) which are incident to the
waveguide ports of the segment to be zero. All quantities
are complex and refer to the k-th element.
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Coupling of Subsections

For the sake of coupling of the subsections, the ansatz
Eq. 1 is expressed for all N segments as the block system

�bcan(s) = Stot(s)�acan(s) + �ycan(s), where (2)

�bcan(s) =

⎛
⎜⎝

�b1(s)
...

�bN(s)

⎞
⎟⎠ , (3)

Stot(s) =

⎛
⎜⎜⎜⎝

S1(s) 0 . . . 0
0 S2(s) . . . 0
...

...
. . .

...
0 0 . . . SN (s)

⎞
⎟⎟⎟⎠ , (4)

�acan(s) =

⎛
⎜⎝

�a1(s)
...

�aN(s)

⎞
⎟⎠ , �ycan(s) =

⎛
⎜⎝

�y1(s)
...

�yN (s)

⎞
⎟⎠ . (5)

The described ordering of the signals is declared as canoni-
cal ordering. In a next step, a permutation matrix P is used
to sort the signals such that all m internal quantities and all
n external quantities are separated:

�bsort(s) =

(
�bint(s)
�bsct(s)

)
= P�bcan(s). (6)

Internal quantities belong to ports of segments which are
connected to other ports of other segments, whereas ex-
ternal quantities belong to ports which are not connected
to other ports internally. Analog to Eq. 6 it holds that
�asort(s) = P�acan(s) and �ysort(s) = P �ycan(s). Exploit-
ing the orthogonality of the permutation matrix PT = P−1

and replacing the canonical quantities in Eq. 2 by the sorted
quantities yields
(

�bint(s)
�bsct(s)

)
= PTStot(s)P

(
�aint(s)
�ainc(s)

)
+
(

�yint(s)
�ysct(s)

)
. (7)

In a further step, a permutation matrix A ∈ R
m×m is used

to express that the internal scattered quantities �bint(s) are
fed back to the internal incident quantities �a int(s). The
feedback is formulated by

�aint(s) = A�bint(s). (8)

Using the above statement, the vector containing the inci-
dent quantites in Eq. 7 can be expressed as

(
�aint(s)
�ainc(s)

)
=
(
A 0
0 I

)

︸ ︷︷ ︸
F

(
�bint(s)
�ainc(s)

)
, (9)

where I ∈ R
n×n is the n-dimensional identity matrix.

Inserting Eq. 9 in Eq. 7 gives
(

�bint(s)
�bsct(s)

)
= PTStot(s)PF︸ ︷︷ ︸

G(s)

(
�bint(s)
�ainc(s)

)
+
(

�yint(s)
�ysct(s)

)

(10)

and expressing G(s) as a block matrix leads to
(

�bint(s)
�bsct(s)

)
=
(
G11(s) G12(s)
G21(s) G22(s)

)(
�bint(s)
�ainc(s)

)
+
(

�yint(s)
�ysct(s)

)
.

(11)
It is highlighted that the dimensions of the block matrices
correspond to the lengths m and n of the signal vectors:

G11(s) ∈ C
m×m, G12(s) ∈ C

m×n,

G21(s) ∈ C
n×m, G22(s) ∈ C

n×n.

Taking the first row of Eq. 11 and solving for �bint(s) yields

�bint(s) = [I−G11(s)]−1[G12(s)�ainc(s)+�yint(s)]. (12)

Subsequently, taking the second row of Eq. 11 gives

�bsct(s) = G21(s)�bint(s)+G22(s)�ainc(s)+�ysct(s) (13)

and replacing the internal quantities �bint(s) by the state-
ment derived in Eq. 12 results in

�bsct(s) =
[
G21(s)[I − G11(s)]−1

]
︸ ︷︷ ︸

Mbeam(s)∈Cn×m

�yint(s) + �ysct(s)+

[
G21(s)[I − G11(s)]−1G12(s) + G22(s)

]
︸ ︷︷ ︸

Scsc(s)∈Cn×n

�ainc(s).

(14)

The first two contributions of the sum reflect the influence
of the beam driven signals of the substructures on the scat-
tered waveguide port signals of the concatenated structure,
whereas the last contribution gives the relationship between
incident and scattered waveguide signals of the concate-
nated structure (common S-matrix description of full struc-
ture). Note, that it is impossible to compute the matrices
Scsc(s) and Mbeam(s) in general, since this implies the
knowledge of the scattering properties Sk(s) of the indi-
vidual segments on an infinite frequency interval. Nonethe-
less, these matrices can be computed in a finite frequency
range, sampled at discrete frequencies, if the S-parameters
of the segments are known in a finite frequency range, sam-
pled at discrete frequencies. This frequency range may be
adjusted by experimental needs.

As mentioned before, CSC does not consider beam ex-
cited signals. Since CTC is a generalization of CSC, the lat-
ter is included in Eq. 14, if the beam excited signals �y int(s)
and �ysct(s) are set to zero, which means that no interac-
tion between beam and structure takes place. In contrast,
the focus of the presented method lies on the computation
of beam driven port signals of large structures. In conse-
quence, signals which are incident on that large structure
are typically set to zero i.e. �ainc(s) = 0.

Transfer to Time Domain

Due to the fact that the excitation of beam driven port
signals is a transient process, Eq. 14 has to be transformed
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into time domain. The complex quantities become real-
valued and the multiplication becomes a convolution:

�bsct(t) = Mbeam(t) ∗ �yint(t) + �ysct(t). (15)

From a signal processing point of view the equation above
is the mathematical description of an analog filter. Its block
diagram is sketched in Fig. 2. To avoid the direct evalua-

Figure 2: Block diagram of filter described in Eq. 15 with
additional band-pass filters to bandlimit the input signals
on a frequency interval, where the dynamic behaviour of
the structure is described by Mbeam(s).

tion of the convolution, a linear time-invariant system with
multiple inputs and outputs is created by means of pole fit-
ting [7], so that this system approximates the frequency
domain behaviour of Mbeam(s) (see Eq. 14) in a finite
frequency range. The response of this system due to the
stimulus �yint(t) is computed using standard ordinary dif-
ferential equation solvers, whereas the final addition of this
response to �ysct(t) to compute �bsct(t) is straightforward.
It is spotlighted that the signals �yint(t) and �ysct(t) have to
be filtered with a band-pass filter, such that these signals
only contain frequencies on an interval, where M beam(s)
is determined.

PROOF OF CONCEPT

To show the validity of the presented method, the signal
scattered in the right TM01 waveguide port of a chain of
two cylindrical cavities (see Fig. 3), driven by an on-axis
ultrarelativistic bunch with a length of σ = 6 mm and a
total charge of q = 1 nC is considered. The reference sig-

Figure 3: Comparison between direct computation vs.
element-wise computation and concatenation using CTC.

nal b2(t) is computed by a straightforward wake field sim-
ulation of the entire structure performed by CST Particle
SuiteTM [6]. The signal b2,2(t) is obtained by application of
the CTC scheme, based on the S-parameters of the identical
substructures, computed in the interval Δf = 1 . . . 8 GHz
by CST’s Fast S-parameter Solver [6] and the beam driven

port signals �yint(t) and �ysct(t) computed by CST Particle
SuiteTM [6]. The beam driven port signals of obj. 2 are
obtained by delaying the signals of obj. 1. Fig. 4 shows
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Figure 4: Comparison between direct computation b2(t)
(blue curve) vs. element-wise computation of signal con-
tributions and coupling using CTC b2,2(t) (red curve). The
signals are filtered such that their band is restricted to Δf .

the proof of principle for the introduced method. It is ob-
servable that the beam driven port signal, acquired by the
straightforward computation (blue plot) is almost identical
to the signal obtained by element-wise computation fol-
lowed by the CTC concatenation (red plot), although only
the TM01 waveguide mode is contemplated for the cavity
coupling. The absolute error in the two norm is given by

1
Ns

‖b2(k T ) − b2,2(k T )‖2 = 8.9686 · 10−4
√

W, (16)

where Ns is the total number of samples, T the constant
time step size of the ODE solver and k the running index.

CONCLUSIONS

The presented method CTC enables the calculation of
beam driven port signals of complex accelerator structures
based on a priori computed S-parameters and transient
wake field computations of the segments of the decom-
posed structure. Using this approach the computation of
beam driven signals of large structures can be performed
on standard hardware. It is important to note that the CTC
formalism is not restricted to the simple monomodal setup,
which is discussed in this paper, but is able to concatenate
segments with more complex topologies. In particular mul-
timodal coupling can be applied.
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