Author: Zhang, J.
Paper Title Page
TUXA01 Status and Challenges of the China Spallation Neutron Source 889
 
  • S. Fu, H. Chen, Y.W. Chen, Y.L. Chi, H. Dong, L. Dong, S.X. Fang, K.X. Huang, W. Kang, J. Li, L. Ma, H.F. Ouyang, H. Qu, H. Sun, J. Tang, C.H. Wang, Q.B. Wang, S. Wang, T.G. Xu, Z.X. Xu, X. Yin, C. Zhang, J. Zhang
    IHEP Beijing, Beijing, People's Republic of China
 
  The accelerator complex of China Spallation Neutron Source (CSNS) mainly consists of an H linac of 80 MeV and a rapid-cycling synchrotron of 1.6 GeV. It operates at 25 Hz repetition rate with an initial proton beam power of 100 kW and is upgradeable to 500kW. The project will start construction in the middle of 2011 with a construction period of 6.5 years. The CSNS accelerator is the first large-scale, high-power accelerator project to be constructed in China and thus we are facing a lot of challenges. This paper presents the current status of CSNS project and summarizes the technology development during the past several years.  
slides icon Slides TUXA01 [3.444 MB]  
 
MOPC132 Influences of the Inner-conductor on Microwave Characteristics in an L-band Relativistic Backward-wave Oscillator* 388
 
  • X.J. Ge, L. Liu, B.L. Qian, J. Zhang, H.H. Zhong
    National University of Defense Technology, Changsha, Kaifu District, People's Republic of China
 
  Funding: College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, People’s Republic of China. *gexingjun230230@yahoo.com.cn
The influences of the inner-conductor on microwave characteristics in an L-band relativistic backward-wave oscillator (RBWO) are investigated theoretically and experimentally. The numerical results show that the resonance frequency decreases obviously with the increase in the inner-conductor radius. To verify the above conclusions, an L-band coaxial RBWO is investigated in detail with particle-in-cell (PIC) code. It is shown that the frequency is lowered from 1.63 GHz to 1.51 GHz when the inner-conductor radius increases from 0.5 cm to 2.5 cm. And the efficiency varies in the range of 35.4-27.7%. Furthermore, experiments are carried out at the Torch-01 accelerator. When the diode voltage is 887.6 kV and the current is 7.65 kA, the radiated microwave with frequency of 1.61 GHz, power of 2.13 GW and efficiency of 31.3% is generated. It is found that the frequency decreases from 1.64 GHz to 1.58 GHz when the inner-conductor radius increases from 0.5 cm to 1.5 cm. And the efficiency varies in the range of 31.3-29.8%.
 
 
THPO029 Microwave Beating Generated by a Dual Beam Accelerator 3406
 
  • G.L. Li, Z.X. Jin, L. Liu, T. Shu, J.H. Yang, C.W. Yuan, J. Zhang
    National University of Defense Technology, Changsha, Kaifu District, People's Republic of China
 
  Funding: National University of Defense Technology
As high power microwave (HPM) technologies gradually matured, the technologies for enhancing the output capacity of HPMs are becoming more and more attractive. However, limited by physics and technology, the approaches for enhancing the output capacity with a single HPM source have encountered difficulties. An alternative method for enhancing the output capacity of HPM sources is the coupling output of dual channel HPM sources. However, if the microwave sources have some coupling with each other, they maybe inter modulate with each other, and the phase-locking of the HPM sources may occur. In order to make sure that the beat waves are generating on the right way, a waveguide diplexer is introduced. Each channel has disjoint pass frequency band, and dual-channel HPM sources are isolated. As the dual-channel electron beams are driven by one accelerator, the HPM sources are expected to have a better match with the accelerator, and even higher microwave power is possible. In the high power experiments, the radiated powers of the beat waves are measured to be about 4.3 GW, 40 ns, the frequencies are about 9.41 GHz and 9.59 GHz.
Correspondence: Guolin Li, College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha, 410073, P. R. China. Email: nudt-liguolin@hotmail.com