Author: Yano, Y.
Paper Title Page
MOPC155 Performance of the Micro-TCA Digital Feedback Board for DRFS Test at KEK-STF 445
 
  • T. Miura, D.A. Arakawa, S. Fukuda, E. Kako, H. Katagiri, T. Matsumoto, S. Michizono, Y. Yano
    KEK, Ibaraki, Japan
 
  The test of distributed RF scheme (DRFS) for ILC was carried out at the superconducting RF test facility in KEK (KEK-STF). The LLRF system and two klystron units were installed in the same tunnel as SRF cavities. The vector-sum control for two cavities was done by using the micro-TCA digital feedback board. This board was the same one developed for the compact-ERL at KEK, but the software was changed for pulse operation. The result of the performance will be reported.  
 
MOPC157 Performance of LLRF System at S1-Global in KEK* 451
 
  • S. Michizono, D.A. Arakawa, S. Fukuda, E. Kako, H. Katagiri, T. Matsumoto, T. Miura, Y. Yano
    KEK, Ibaraki, Japan
 
  Vector-sum control was carried out at S1-Global. The rf stabilities of 0.007% in amplitude and 17 mdeg. in phase are obtained. Various diagnostics (such as on-line quench pulse detector, dynamic detuning monitor and so on) is implemented. The IF-mixture system, where 3 intermediate frequencies (IF) are used and the number of ADCs can be reduced, was used as rf waveform monitors. These monitors are used for the performance analysis. Quench phenomena observed at the high-gradient operation are also analyzed from the view point of dynamic change in loaded Q and cavity detuning during rf pulse.  
 
MOPC156 Operation Test of Distributed RF System with Circulator-less Waveguide Distribution in S1-Global Project at STF/KEK 448
 
  • T. Matsumoto, M. Akemoto, D.A. Arakawa, S. Fukuda, H. Honma, E. Kako, H. Katagiri, S. Matsumoto, H. Matsushita, S. Michizono, T. Miura, H. Nakajima, K. Nakao, T. Shidara, T. Takenaka, Y. Yano, M. Yoshida
    KEK, Ibaraki, Japan
 
  Distributed RF System (DRFS) is one candidate for a single main linac tunnel design of International International Linear Collider (ILC). In the DRFS, more than ten 800-kW klystrons having a modulating anode are operated by a common DC power and a modulation anode modulator. Each klystron feeds its power into two superconducting cavities and its waveguide distribution system is configured without circulators. This DRFS consists of four SC cavities, two klystrons and a modulator was demonstrated in S1-Global project. The results of circulator-less operation in the DRFS will be reported.  
 
TUPS088 Charge Stripping of Uranium-238 Ion Beam with Low-Z Gas Stripper 1746
 
  • H. Imao
    RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
  • N. Fukunishi, A. Goto, H. Hasebe, O. Kamigaito, M. Kase, H. Kuboki, H. Okuno, T. Watanabe, Y. Yano, S. Yokouchi
    RIKEN Nishina Center, Wako, Japan
 
  One of the primary goals of the RIKEN RI beam factory is to generate unprecedented high-power uranium beams (up to tens kW), which yield an enormous breakthrough for exploring new domains of the nuclear chart. The development of reliable and efficient charge stripping scheme for such high-power beams is a key unsolved issue, affecting the overall performance of the heavy ion accelerations. A charge stripper using low-Z (low atomic number Z) gas is an important candidate. Because of the suppression of the electron capture process, the high equilibrium mean charge states for the low-Z gas stripper are expected in conjunction with the intrinsic robustness of the gas. There was, however, no direct experimental data of the charge evolution, because of the difficulty in making massive windowless low-Z gas targets. In the present work, the charge evolution of the 238U beams injected at 10.75 MeV/u were investigated using thick hydrogen and helium gas strippers with huge differential pumping system newly developed. In the energy region of interest, near 10 MeV/u, achievable mean charge states around 65+ with the low-Z gas strippers are far superior to those of the medium-Z ones around 55+.  
 
THPPA02 EPS-AG Budker Prize Presentation: Retrospective of 24 years of RIBF Life 2899
 
  • Y. Yano
    RIKEN Nishina Center, Wako, Japan
 
  The speaker will look back on 24 years (from 1987 to now) devoted to the RIBF project.  
slides icon Slides THPPA02 [10.303 MB]