Author: Winkelmann, T.
Paper Title Page
WEPS044 Status of the Ion Source and RFQ Test Bench at the Heidelberg Ion Beam Therapy Centre 2586
 
  • R. Cee, E. Feldmeier, M. Galonska, Th. Haberer, J.M. Mosthaf, B. Naas, A. Peters, S. Scheloske, J. Schreiner, T. Winkelmann
    HIT, Heidelberg, Germany
 
  The possibility of cancer treatment with proton and carbon beams provides HIT (Heidelberg Ion Beam Therapy Centre) with an exceptional feature and gives it a unique position in Europe. In the future, the variety of available ions will be extended towards helium and oxygen. To allow fast switching between three of these ion species an additional ion-source / spectrometer combination will be installed in the LEBT. For comprehensive tests of the new components a dedicated test bench including a beam emittance analyzer has been set up at the HIT facility. It opens up the opportunity to perform detailed investigations of the improved ECR ion source with its enhanced extraction system and the redesigned RFQ of the HIT injector. Parallel to the measurements, the beam optical model of the assembly could be refined to better reproduce the beam diagnostic results. Since August 2010 the test bench has been in operation in different configurations. Behind the RFQ a beamline comprising a phase-probe-based time-of-flight system and beam current measurement devices is set up. The aim is to determine the RFQ working point and to validate the optimizations in terms of particle transmission.  
 
THOAB03 Commissioning of the Ion Beam Gantry at HIT 2874
 
  • M. Galonska, R. Cee, Th. Haberer, K. Höppner, A. Peters, S. Scheloske, T. Winkelmann
    HIT, Heidelberg, Germany
 
  The Heidelberg Ion Beam Therapy Facility (HIT) is the first dedicated proton and carbon cancer therapy facility in Europe. It uses a full 3D intensity controlled raster scanning dose delivering method. The ion energy ranges from ca. 50 to 430 MeV/u corresponding to ion penetration depths of 20 to 300 mm in water. The HIT facility comprises the only heavy ion gantry worldwide designed for the beam transport of beams demanding a magnetic rigidity from 1 to 6.6 Tm. The gantry rotation of 360° enables beam scanning patient treatment from arbitrary directions. The libraries of carbon and proton pencil beams at the gantry are now offered with the whole variety of ion beam properties, i.e. 255 energy steps, 4 beam foci, 360°, and 10 intensities (106-1010/spill). The beam has to be adjusted only for a fraction of possible combinations of energy, focus, and gantry angle. These are taken as base points for a calculation of an overall number of about 37,000 different set values per ion type, and one intensity step according to the data supply model. This paper gives an outline on the practical concepts and results of adjusting the required beam properties independent of the gantry angle.  
slides icon Slides THOAB03 [4.526 MB]