Author: Vogel, V.
Paper Title Page
MOPC007 Cold Photocathode RF Gun 77
 
  • V. Vogel, K. Flöttmann, S. Schreiber
    DESY, Hamburg, Germany
 
  Heating and thermal expansion in the normal conductivity RF-photo electron gun, are the main limitations to achieve high accelerating gradient and consequently a low emittance beam. Some pure materials show a significant increase in thermal conductivity with a small coefficient of temperature expansion at temperatures around 20 degrees Kelvin. Possible materials are Molybdenum, Iridium or Tungsten. However, machining of these materials is very difficult. Therefore we propose a simplified shape for an L-band RF gun. We expect to achieve a significant increase in gradient for similar RF powers as used in the present DESY RF-gun. On the other hand, it would also be possible to increase the duty cycle keeping a moderate gradient. In this report we discuss one possible design of an RF-gun using hard metals and present simulations on thermal properties.  
 
TUPC060 A Multi-mode RF Photocathode Gun 1135
 
  • S.V. Kuzikov, A.A. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT, USA
  • Y. Jiang
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • V. Vogel
    DESY, Hamburg, Germany
 
  A photocathode injection gun based on standard emittance compensating techniques and driven by several (N ≥ 2) harmonically related RF sources is considered. Multi-harmonic excitation can provide high-quality flatness in time of the field at the cathode when a bunch is being injected. This allows one to obtain ≥1 nC, 20-40 ps electron bunches with preservation of low emittance. Another advantage is a reduction of Ohmic losses and the required input RF power (for a given cathode field). Preliminary calculations show that input power in a three-mode cavity (0.65 GHz, 1.3 GHz, 2.6 GHz) is nearly half the power needed to feed a single mode with the same cathode field. A further appealing property is the predicted increase of breakdown threshold due to a reduction of surface exposure time to high fields in a symmetric cavity, and due to the so-called anode-cathode effect in a longitudinally asymmetric cavity. These properties may help one to reach bunch energies as high as 3-5 MeV after the first half cell.  
 
THPC083 Analysis of Parameter Space of a Kilowatt-scale Free Electron Laser for Extreme Ultraviolet Lithography Driven by L-band Superconducting Linear Accelerator Operating in a Burst Mode 3086
 
  • E. Schneidmiller, V. Vogel, H. Weise, M.V. Yurkov
    DESY, Hamburg, Germany
 
  The driving engine of the Free Electron Laser in Hamburg (FLASH) is an L-band superconducting accelerator. It is designed to operate in a burst mode with 800 microsecond pulse duration at a repetition rate of 10 Hz. The maximum accelerated beam current during the macropulse is 10 mA. In this paper we analyze the parameter space for optimum operation of the FEL at the wavelength of 13.5 nm and 6.7 nm. Our analysis shows that the FLASH technology holds great potential for increasing the average power of the linear accelerator and an increase of the conversion efficiency of the electron kinetic energy to the light. Thus, it will be possible to construct a FLASH like free electron laser with an average power up to 3 kW. Such a source meets the requirements of the light source for the next generation lithography.  
 
THPC111 Operation of an L-band RF Gun with Pulses Inside the Burst Mode RF Pulse 3146
 
  • V. Vogel, V. Ayvazyan, B. Faatz, K. Flöttmann, D. Lipka, P. Morozov, H. Schlarb, S. Schreiber
    DESY, Hamburg, Germany
 
  The Free-Electron Laser in Hamburg (FLASH) is a user facility since 2005, delivering femtosecond short radiation pulses in the wavelength range between 4.1 and 44 nm using the SASE principle. In FLASH, the electron beam is accelerated to 1.25 GeV with L-band superconducting cavities. The electron source is a normal conducting RF-gun photoinjector. The L-band standing wave RF gun has one and a half cells. The gun is operated in burst mode with an RF pulse length of up to 900 microseconds and a repetition rate of 10 Hz. Several hundreds to thousands of bunches are accelerated per second. With 5 MW of pulsed forward power, the dissipated power inside the RF gun is 45 kW. In this paper we propose an operational mode which allows us to reduce the dissipated power to ease operation or to increase the effective duty cycle in the gun by pulsing the gun within one burst. We report on first experimental results at FLASH, where an RF burst of 46μRF-pulses with a length of 10 microseconds separated by 10 microseconds has been successfully generated reducing the dissipated power by a factor of 2.