Author: Vobly, P.
Paper Title Page
THPC063 A 2.9 Tesla Room Temperature Superbend Magnet for the Swiss Light Source at PSI 3038
 
  • A.L. Gabard, D. George, M. Negrazus, L. Rivkin, V. Vrankovic
    PSI, Villigen, Switzerland
  • Y. Kolokolnikov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  The Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, is a 3rd generation synchrotron light source. With an energy of 2.4 GeV, it provides high brightness photon beams for research in materials science, biology and chemistry. The SLS storage ring contains 36 room temperature bending magnets, all of which produce light for experimental use; at the design energy of 2.4 GeV, they have a maximum magnetic field of 1.4 Tesla. Light is produced along the entire bending arc but can only be transferred to the external experimental facilities from selected short portions of the beam path. In cooperation with the Budker Institute for Nuclear Physics (BINP) in Novosibirsk, Russia, three of these magnets were replaced with new room temperature magnets with short regions of high magnetic field up to 2.9 Tesla. This enabled the production of intense light beams at shorter wavelengths than from the existing magnets. The critical energy of the 2.9 T magnet is 11.1 keV, compared to the 5.4 keV of the normal bend. This paper describes the design, including the multiple restraints, together with the measurement and commissioning of these so-called superbends.  
 
THPS009 Coherent Electron Cooling Demonstration Experiment 3442
 
  • V. Litvinenko, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A.V. Fedotov, Y. Hao, D. Kayran, G.J. Mahler, W. Meng, T. Rao, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Coherent electron cooling (CEC) is considered to be on of potential candidates capable of cooling high-energy, high-intensity hadron beams to very small emittances. It also has a potential to significantly boost luminosity of high-energy hadron-hadron and electron-hadron colliders. In a CEC system, a perturbation of the electron density caused by a hadron is amplified and fed back to the hadrons to reduce the energy spread and the emittance of the beam. Following the funding decision by DoE office of Nuclear Physics, we are designing and building coherent electron cooler for a proof-of-principle experiment at RHIC to cool 40 GeV heavy ion beam. In this paper, we describe the layout of the CeC installed into IP2 interaction region at RHIC. We present the design of the CeC cooler and results of preliminary simulations.  
 
THPZ003 The SuperB Project: Accelerator Status and R&D 3684
 
  • M.E. Biagini, S. Bini, R. Boni, M. Boscolo, B. Buonomo, T. Demma, E. Di Pasquale, A. Drago, L.G. Foggetta, S. Guiducci, S.M. Liuzzo, G. Mazzitelli, L. Pellegrino, M.A. Preger, P. Raimondi, U. Rotundo, C. Sanelli, M. Serio, A. Stecchi, A. Stella, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • M.A. Baylac, O. Bourrion, J.-M. De Conto, N. Monseu, C. Vescovi
    LPSC, Grenoble, France
  • K.J. Bertsche, A. Brachmann, Y. Cai, A. Chao, M.H. Donald, R.C. Field, A.S. Fisher, D. Kharakh, A. Krasnykh, K.C. Moffeit, Y. Nosochkov, A. Novokhatski, M.T.F. Pivi, J.T. Seeman, M.K. Sullivan, S.P. Weathersby, A.W. Weidemann, U. Wienands, W. Wittmer, G. Yocky
    SLAC, Menlo Park, California, USA
  • S. Bettoni
    PSI, Villigen, Switzerland
  • A.V. Bogomyagkov, I. Koop, E.B. Levichev, S.A. Nikitin, I.N. Okunev, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • B. Bolzon, M. Esposito
    CERN, Geneva, Switzerland
  • F. Bosi
    INFN-Pisa, Pisa, Italy
  • L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • P. Fabbricatore, S. Farinon, R. Musenich
    INFN Genova, Genova, Italy
  • E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • C. Rimbault, A. Variola
    LAL, Orsay, France
  • Y. Zhang
    IHEP Beijing, Beijing, People's Republic of China
 
  The SuperB collider project has been recently approved by the Italian Government as part of the National Research Plan. SuperB is a high luminosity (1036 cm-2 s-1) asymmetric e+e collider at the Y(4S) energy. The design is based on a “large Piwinski angle and Crab Waist” scheme already successfully tested at the DAΦNE Phi-Factory in Frascati, Italy. The project combines the challenges of high luminosity colliders and state-of-the-art synchrotron light sources, with two beams (e+ at 6.7 and e- at 4.2 GeV) with extremely low emittances and small beam sizes at the Interaction Point. As unique features, the electron beam will be longitudinally polarized at the IP and the rings will be able to ramp down to collide at the tau/charm energy threshold with one tenth the luminosity. The relatively low beam currents (about 2 A) will allow for low running (power) costs compared to similar machines. The insertion of beam lines for synchrotron radiation users is the latest feature included in the design. The lattice has been recently modified to accommodate insertion devices for X-rays production. A status of the project and a description of R&D in progress will be presented.