Author: Tsai, Z.-D.
Paper Title Page
TUPS063 Power Saving Schemes in the NSRRC 1680
  • J.-C. Chang, Y.F. Chiu, J.-M. Lee, Y.-C. Lin, C.Y. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
  National Synchrotron Radiation Research Center (NSRRC), Taiwan will complete the construction of the civil and utility system engineering of the Taiwan Photon Source (TPS) in the end of 2012. The power consumption of the TPS is estimated about 2.3 times of that of the existed Taiwan Light Source (TLS). To cope with increasing power requirement in the near future, we have been conducting several power saving schemes, which include power requirement control, optimization of chillers operation, application of heat pump, air conditioning system improvement, power factor improvement and the lighting system improvement.  
TUPS064 Construction Status of the Utility System for the 3GeV TPS Storage Ring 1683
  • J.-C. Chang, J.-R. Chen, Y.-C. Chung, C.K. Kuan, K.C. Kuo, J.-M. Lee, Y.-C. Lin, C.Y. Liu, I. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
  The construction of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) has been contracted out in the end of 2009. The whole construction of the utility system is scheduled to be completed in the end of 2012. Total budget of this construction is about four million dollars. The utility system includes the electrical power, cooling water, air conditioning, compressed air and fire control systems. The TPS construction site is located adjacent to TLS. Some areas of TPS and TLS are overlapped. Under tight schedule, limit budget and geographic constrains, it is a challenge to complete the utility system construction of TPS on time, on budget, and to specification. This paper presents some main issues and status of the utility system construction for the TPS storage ring.  
TUPS065 Design of the De-ionized Water Treatment for Taiwan Photon Source 1686
  • Z.-D. Tsai, W.S. Chan, C.K. Kuan
    NSRRC, Hsinchu, Taiwan
  This work presents the water treatment design of Taiwan Photon Source (TPS). The system design is influenced by supplied water quality, water quantity and the selected process scheme. The system is composed of a pretreatment, make-up, and points-of-use filtration systems. The pretreatment system consists of an active carbon tower, a normally cartridge filter and a reversed osmosis (RO) unit. Furthermore, the make-up system consists of an ultraviolent (UV) TOC reduction unit and a ion-exchange resin unit. Following the water treatment process, the proposed system can provide high quality de-ionized water whose resistivity is better than 10 MΩ-cm at 25±0.1 degree C and dissolved oxygen is less than 10 ppb.  
TUPS066 Design of Front End Safety Interlock System for Taiwan Photon Source 1689
  • H.Y. Yan, J.-R. Chen, G.-Y. Hsiung, C.K. Kuan, I.C. Sheng, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
  Safety interlock is one of critical subsystems in synchrotron radiation accelerator. A front end (FE) interlock prototype system has been designed, fabricated, and initially tested for Taiwan Photon Source (TPS). TPS FE interlock logic is designed based on that of Taiwan Light Source (TLS), and moderately modified due to the accelerator parameter discrepancy between TPS and TLS. The programmable automation controllers (PAC) have been utilized in FE safety interlock system for their reliability, convenience, processing capability, communication, and stability in user interface. In FE PAC system, touch panels are used as the graphical user interface (GUI) to control and monitor FE components. In addition, with GUI control it is used to beam position monitoring devices as well as confined beam sizes aperture for beam line users. The interlock design such as data acquisition and parameters monitoring for vacuum pressure, flow rate of cooling water, pressure of compressive air, chamber and water temperature, and overall interlock logic are also presented in this paper.