Author: Soldatov, V.
Paper Title Page
MOPC037 Engineering Design and Fabrication of X-band Damped Detuned Structure for the CLIC Study 154
 
  • V. Soldatov, D. Gudkov, A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
  • S. Atieh, A. D'Elia, A. Grudiev, G. Riddone
    CERN, Geneva, Switzerland
  • R.M. Jones, V.F. Khan
    UMAN, Manchester, United Kingdom
 
  A Damped Detuned Structure (DDS), known as CLICDDSA*, has been designed for the Compact Linear Collider (CLIC) study, and is presently under fabrication. The wakefield in DDS structures is damped using a combination of detuning the frequencies of beam-excited higher order modes and by light damping, through slot-coupled manifolds. The broad principles of the design are similar to that used in the NLC/GLC**. This serves as an alternative to the present baseline CLIC design which relies on heavy damping. CLICDDSA is conceived to be tested for its capacity to sustain high gradients at CERN. This structure operates with a 120 degrees phase advance per cell. We report on engineering design and fabrication details of the structure consisting of 24 regular cells plus 2 matching cells at both ends, all diffusion bonded together. This design takes into account practical mechanical engineering issues and is the result of several optimizations since the earlier CLICDDS designs.
* V. F. Khan et al., “Recent Progress on a Manifold Damped and Detuned Structure for CLIC”, Proc. of IPAC10, WEPE032, p. 3425 (2010).
** R.M. Jones et al., Phys. Rev. STAB 9, 102001 (2006).
 
 
MOPC052 Engineering Design and Fabrication of X-band RF Components 196
 
  • M. Filippova, A. Olyunin, V. Soldatov, A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • S. Atieh, G. Riddone, I. Syratchev
    CERN, Geneva, Switzerland
 
  The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK, and these facilities are used by CLIC study in the frame of the X-band structure collaboration for testing accelerating structures scaled to that frequency*. Generally RF components are used in the transmission and the transformation of radio frequency signals generated by the power supply. The operating range of the devices accommodates the frequencies from 11.424 to 11.9942 GHz. RF components are needed for the Klystron test stand at CERN, and also for the X-FEL projects at PSI and Sincrotrone Trieste. Currently CERN is ordering tens of these companies to industry. The engineering design of the RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.
* K.M. Schirm et al., “A 12 GHZ RV Power source for the CLIC study”, Proc. of IPAC’10, THPEB053, p. 3990 (2010).