Author: Serriere, V.     [Serrière, V.]
Paper Title Page
MOPC004 352.2 MHz HOM Damped Normal Conducting ESRF Cavity: Design and Fabrication 68
 
  • V. Serrière, A.K. Bandyopadhyay, D. Boilot, L. Goirand, J. Jacob, B. Ogier, A. Triantafyllou
    ESRF, Grenoble, France
 
  Funding: This work, carried out within the framework of the ESRFUP project, has received research funding from the EU Seventh Framework Programme, FP7.
The ongoing ESRF upgrade included an option for an increase of the storage ring current from 200 to 300 mA, which has been tested successfully with the existing RF system. At this current level the HOM tuning of the existing five-cell copper cavities becomes extremely delicate and in view of a future reliable operation in user mode, new HOM free normal conducting cavities were developed at the ESRF. The design is based on the existing BESSY/ALBA cavity. However, several substantial modifications have been implemented and different fabrication processes elaborated to improve the design. Three operational prototypes will be delivered by three manufacturers in the coming months and will be fully tested on the ring. Although the 300 mA option has finally not been retained for the first phase of the ESRF upgrade, the aim is now to validate the new cavity design for a possible later increase in current.
 
 
THPC009 Performance and Upgrade of the ESRF Light Source 2924
 
  • J.-L. Revol, J.C. Biasci, J-F. B. Bouteille, J. Chavanne, F. Ewald, L. Farvacque, A. Franchi, G. Gautier, L. Goirand, M. Hahn, L. Hardy, J. Jacob, J.M. Koch, M.L. Langlois, G. Lebec, J.M. Mercier, T.P. Perron, E. Plouviez, K.B. Scheidt, V. Serrière
    ESRF, Grenoble, France
 
  The European Synchrotron Radiation Facility (ESRF) is now fully engaged in a large Upgrade Programme of its infrastructure, beamlines and X ray source. In this context, a first set of 10 insertion device straight sections are being lengthened from five to six metres; a number of them will be operated with canted undulators. The insertion devices are themselves subject to an ambitious development programme to fulfil the scientific requirements. The Radio Frequency system upgrade has started with the replacement of the booster klystron-based transmitter by high power solid state amplifiers, and the development of HOM damped cavities operating at room temperature. A completely new DC-AC orbit stabilization system using 224 BPMs and 96 orbit steerers is currently being commissioned. The upgrade is conducted while keeping, and even improving, routine performance for the user service. In particular the recent installation of new skew quadrupole power supplies allows routine operation with ultra low vertical emittance. This paper reports on the present operation performance of the source, highlighting recent developments and those still to come.