Author: Rubin, D. L.
Paper Title Page
MOOCA03 Updates to the International Linear Collider Damping Rings Baseline Design 32
 
  • S. Guiducci, M.E. Biagini
    INFN/LNF, Frascati (Roma), Italy
  • G. Dugan, M.A. Palmer, D. L. Rubin
    CLASSE, Ithaca, New York, USA
  • J. Gao, D. Wang
    IHEP Beijing, Beijing, People's Republic of China
  • M.T.F. Pivi, Y. Sun
    SLAC, Menlo Park, California, USA
  • J. Urakawa
    KEK, Ibaraki, Japan
 
  A new baseline design for the International Linear Collider (ILC) damping rings has been adopted which reduces the ring circumference to 3.2 km from 6.4 km. This design change is associated with a revised plan to operate the ILC with one half the beam current originally specified in the ILC Reference Design Report. We describe the new layout and lattice that has been developed for the shorter ring. In addition, we discuss features of the new design that will allow operation at a 10Hz repetition rate which is twice the rate specified for baseline operation. Finally, we examine the implications for restoring operation with the originally specified beam current while maintaining the smaller ring circumference.  
slides icon Slides MOOCA03 [2.381 MB]  
 
TUYB02 The Challenges of Ultra-low Emittance Damping Rings 956
 
  • D. L. Rubin
    CLASSE, Ithaca, New York, USA
 
  Funding: Work supported by the National Science Foundation and by the US Department of Energy under contract numbers PHY-0734867 and DE-FC02-08ER41538.
In this paper we review the state of the art of the design of damping rings for linear colliders, as supported by the experimental data from ATF and CESR test damping rings. We consider implications of measurements of electron cloud dynamics and mitigation in a radiation dominated ring. The techniques developed for tuning for ultra-low emittance in these rings are summarized. Other dynamics manifested in the ultra-low emittance regime where collective effects are important are discussed.
 
slides icon Slides TUYB02 [7.198 MB]  
 
TUPC052 Normal Mode BPM Calibration for Ultralow-Emittance Tuning in Lepton Storage Rings 1114
 
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • D. L. Rubin, D. Sagan, J.P. Shanks
    CLASSE, Ithaca, New York, USA
 
  BPMs capable of high-resolution turn-by-turn measurements offer the possibility of new techniques for tuning for ultra-low beam emittance. In this paper, we describe how signals collected from individual buttons during resonant beam excitation can be used to calibrate BPMs to read the beam position in a normal mode coordinate system. This allows for rapid minimization of the mode II emittance, simply by correcting the mode II dispersion. Simulations indicate that the technique is effective and robust, and has the benefit of being insensitive to BPM gain and alignment errors that can limit the effectiveness of other techniques.  
 
WEPC134 Unified Accelerator Modeling Using the Bmad Software Library 2310
 
  • D. Sagan, I.V. Bazarov, J.Y. Chee, J.A. Crittenden, G. Dugan, K. Finkelstein, G.H. Hoffstaetter, C.E. Mayes, S. Milashuk, D. L. Rubin, J.P. Shanks
    CLASSE, Ithaca, New York, USA
  • R. Cope
    CSU, Fort Collins, Colorado, USA
 
  Funding: Work supported by the National Science Foundation and by the US Department of Energy under contract numbers PHY-0734867 and DE-FC02-08ER41538.
The Bmad software library has proved to be a useful tool for accelerator simulations owing to its modular, object-oriented design. It is now used in a number of design, simulation and control programs at the Cornell Laboratory for Accelerator-based Sciences and Education. Work is ongoing to expand Bmad in a number of directions. One aim is tohave a complete framework in order to simulate Cornell's Energy Recovery Linac from Gun cathode (including space-charge) to photon generation to photon tracking through to the x-ray experimental end stations. Other work includes synchrotron radiation tracking including reflections from the vacuum chamber walls which is useful for electron cloud investigations, spin tracking, beam break-up instability, intra-beam scattering, etc. This paper will discuss the current state of the Bmad software along with the long-term goals.