Author: Rogers, C.T.
Paper Title Page
MOPZ013 MAUS: MICE Analysis User Software 850
 
  • C.D. Tunnell
    JAI, Oxford, United Kingdom
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The Muon Ionization Cooling Experiment (MICE) is unique because it measures accelerator physics quantities using particle physics methods. It follows that the software that forms the theoretical model of MICE needs to be able to not only propagate beam envelopes and optical parameters but also model detector responses and matter effects for cooling. MICE addresses this dichotomy with the software framework MAUS in order to maximize its physics sensitivity whilst providing the conveniences of, for example, a common data structure. The diversity of challenges that MICE provides from the analysis perspective means that appropriately defining the software scope and layout is critical to the correctness and maintainability of the final accelerator physics analyses. MICE has structured its code into a Map-Reduce framework to enable better parallelization whilst also introducing unit, functional, and integration tests to ensure code reliability and correctness. These methods can apply to other experiments.  
 
MOPZ028 Solid Absorber Program Status for MICE Step IV 859
 
  • P. Snopok
    IIT, Chicago, Illinois, USA
  • J.H. Cobb
    JAI, Oxford, United Kingdom
  • G.T. Kafka
    Illinois Institute of Technology, Chicago, Illinois, USA
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: Work is supported by the Science and Technology Facilities Council and the U.S. Department of Energy.
In the Muon Ionization Cooling Experiment (MICE), muons are cooled by passing through material and then through RF cavities to compensate for the energy loss, which reduces the transverse emittance. In addition to demonstrating the transverse emittance reduction using flat solid absorbers, it is also planned to demonstrate longitudinal emittance reduction via emittance exchange in MICE by using a solid wedge-shaped absorber in MICE Step IV. The current status of the simulation and design effort for both flat and wedge-shaped solid absorbers is summarized.
 
 
MOPZ034 Proton Contamination Studies in the MICE Muon Beam Line 871
 
  • S.D. Blot, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • R.R.M. Fletcher
    UCR, Riverside, California, USA
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The Muon Ionization Cooling Experiment (MICE) aims to demonstrate transverse beam emittance reduction for a muon beam. To create these muons, a titanium target is dipped into the ISIS proton accelerator at Rutherford Appleton Laboratory (UK) to create pions, which are transported and decay to muons in the MICE beamline. Beam particle identification and triggering is performed using time of flight (ToF) detectors. When running the MICE beamline with positive polarity, protons produced in the target contaminate the muon beam with a sufficiently high rate to saturate the TOF detectors. Polyethylene sheets of varying thicknesses were installed to absorb the proton impurities in the beam. Studies with pion beams at momenta of 140, 200, and 240MeV/c were performed with different proton absorber thicknesses. The results of these studies show good agreement with theoretical range plots and will be presented.  
 
THPS008 Bucked Coils Lattice for the Neutrino Factory 3439
 
  • A. Alekou, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  In the Neutrino Factory muon front end, ionization cooling is used to reduce the very large initial transverse muon beam emittance. The current baseline cooling channel, FSIIA, performs well in simulations with respect to the transmission and cooling. However, recent studies indicate the RF voltage may be limited when external magnetic field is applied and therefore, as the FSIIA lattice has a large magnetic field at the position of the RF cavities, the feasibility of FSIIA may be questioned. Bucked Coils lattice, a new cooling lattice that uses different radius and opposite polarity coils placed at the same position along the beam-axis, aims to achieve low magnetic field at the position of the RF cavities while obtaining comparable transmission to FSIIA. The detailed comparison between FSIIA and different versions of the Bucked Coils configuration with respect to the magnetic field, beam dynamics and transmission are presented in this paper.