
MAUS: MICE ANALYSIS USER SOFTWARE∗

C. D. Tunnell† , John Adams Institute for Accelerator Science, University of Oxford, OX13RH, UK,
C. T. Rogers, ASTeC, Rutherford Appleton Laboratory, OX110QX, UK,

for the MICE collaboration.

Abstract

The Muon Ionization Cooling Experiment (MICE) is
unique because it measures accelerator physics quantities
using particle physics methods. It follows that the soft-
ware that forms the theoretical model of MICE needs to
have both accelerator physics and particle physics codes.
MICE addresses this with the new software framework
“MAUS”. The diversity of challenges that MICE provides
means that defining the software scope and layout is critical
to the correctness and maintainability of the final acceler-
ator physics analysis. MICE has restructured its code into
a Map-Reduce framework to enable better parallelization
while also testing the code with unit, functional, and inte-
gration tests to ensure code reliability and correctness. The
experiences of this transformation are shared.

THE MICE EXPERIMENT

Muon beams have a wide range of potential applications
in fields ranging from medicine to defense but the particle
physics community is specifically interested in a Neutrino
Factory (NF) or Muon Collider (MC) [1]. Cooling is ad-
vantageous for a NF because there are three effects that
affect neutrino event statistics and physics sensitivities: the
size of the far detector, the running time, and the number
of muons within the storage ring that are aimed at the far
detector. The latter is increased by reducing the transverse
emittance such that the muons from pion decay fit within
the dynamic aperture of the machine.

MICE will demonstrate the feasibility of reducing the
transverse emittance of muon beams. This is called cool-
ing. Beam cooling has previously been achieved with
stochastic cooling, synchrotron radiation damping and
electron cooling [2]. However, these techniques are too
slow for muons whose lifetime is 2µs: a different method
must be used.

MICE will demonstrate ionization cooling for the first
time. A cooling cell contains two parts: the first reduces
the muon’s transverse and longitudinal momenta by ion-
ization loss in material and the second accelerates the muon
longitudinally with RF cavities, thereby reducing the trans-
verse momentum while leaving the longitudinal momen-
tum the same. This reduces transverse emittance. This re-
duces transverse emittance cell-after-cell down to an equi-
librium determined by the strength of focusing, and the

∗We would like to acknowledge the assistance of the Software Sustain-
ability Institute. The work carried out by the SSI is supported by EPSRC
through grant EP/H043160/1.

† Corresponding author: c.tunnell1@physics.ox.ac.uk

relative amount of energy loss and multiple scattering in
the absorbers. The single cell tested in MICE can cool the
transverse emittance by up to 15%.

Emittance reduction will be measured to a precision
of 0.1% of the input emittance, significantly more pre-
cisely than conventional emittance measurement methods
[3]. MICE measures the phase-space coordinates of each
particle by using a wide range of detectors. Detectors up-
and down-stream of the cooling section measure the posi-
tion and momentum four vectors; these detectors have al-
ready been constructed and commissioned.

SOFTWARE REQUIREMENTS

The MICE analysis software must be both particle
physics code and accelerator physics code. The ability
to simulate electronics response and reconstruct tracks are
examples of particle physics functionality. Accelerator
physics requires the functionality to be able to compute
transfer matrices and Twiss parameters. Both types of func-
tionality require knowledge of the magnetic fields and ge-
ometry, so these codes fit within a single scope or package.

The requirements imposed upon the software were pre-
viously addressed by the G4MICE package [4], created in
2002. Test coverage and documentation were missing for
the much of the code base making development, use and
verification of the code challenging. This is a frequent
problem in physics and industry. The extraction princi-
ple outlined in [5] was used to refactor the code, where
refactoring is the systematic process of restructuring code
to address changing specifications.

Since it was inefficient to attempt to understand that
code, it was frozen and no changes were allowed. To im-
prove the project, small pieces of code were gradually writ-
ten to replace old functionality. These new codes had qual-
ity requirements: good comments, a style guide, and tests.
This made it possible to slowly improve the quality and
maintainability of the code base while retaining existing
functionality.

MAUS

The MICE Analysis User Software (MAUS) has been of-
ficial MICE software since 2010 and it is intended to move
the software project from the proposal stage to the analy-
sis of data [6]. The goal was to restructure the code into
a Map-Reduce [7] data flow in order to simplify the inter-
faces that developers have to follow and aid running the

MOPZ013 Proceedings of IPAC2011, San Sebastián, Spain

850C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

A09 Muon Accelerators and Neutrino Factories

code in parallel. The terms “map” and “reduce” are func-
tional programming terms.

The basic unit of information is “spill-level”, which cor-
responds to a single beam extraction. Spills are indepen-
dent, thus simplifying parallelization. For example, each
“map” should process a spill by converting the binary DAQ
output to a processable data structure and then applying a
track fitting routine. A similar thing can be done to Monte
Carlo (MC) simulation of the apparatus. “Reduce” allows
functionality that requires access to the entire data set of
a single spill: evolution of parameters over time, making
histograms, and so forth.

The JSON data structure is used to represent a spill in
order to aid developers in extending it and users in under-
standing it. An example spill input is:

{
"mc_particles": [

{
"primary": {

"energy": 210.0,
"momentum": {

"x": 0.0,
"y": 0.0,
"z": 1.0

},
"particle_id": 13,
"position": {

"x": 0.0,
"y": -0.0,
"z": -5000.0

},
"random_seed": 10,
"time": 0.0

}
}

]
}

and an example macro that controls MAUS is:

import MAUS

File with particles to simulate
my_input = MAUS.InputJSON("evts.json")

Create an empty array of maps, then
populate it with the functionality you
want to use.
my_map = MAUS.MapGroup()

Add geant4 Monte Carlo simulation
my_map.append(MAUS.MapSimulation())

Add electronics models
my_map.append(MAUS.MapTOFDigitization())
my_map.append(MAUS.MapTrackerDigitization())

Create set of standard demo plots
my_reduce = MAUS.ReduceMakeDemoPlots()

Where to save output?
filename = ‘simulation.out’

Create uncompressed file object.
’w’ means write.
output_file = open(filename, ‘w’)

Then construct a MAUS output component
my_output = MAUS.OutputJSON(output_file)

The Go() drives all the components you
pass in, then check the file defined
above for the output
MAUS.Go(my_input, my_map,

my_reduce, my_output)

where dataflow in MAUS is illustrated in Fig. 1.
The macro language is Python but components can be

written in either Python or C++. SWIG [8] is used to make
Python bindings to C++ code which are created automati-
cally.

APPLYING LESSONS FROM INDUSTRY

Knowledge gained within industry can be applied and
enable the project to run more smoothly. Various industry
procedures were tested in developing MAUS.

Project Management and Issue Tracker

A paradigm shift in how the code was written came nat-
urally with the change in how the project was managed.
Before any code was written, a project management web-
site was set up that included a wiki and issue tracker. This
allowed people to keep track of task assignment, current
bugs, and feature requests. It is a vital tool for establishing
the status of various blocks of work while simultaneously
providing a useful historical record and institutional mem-
ory.

Code Reviews

Code reviews are standard practice in industry but rare
within physics. New code requires an hour of review before
entering the trunk with other communal code. In addition
to tracking down bugs, the review process also helps spread
knowledge of the project between developers. It helps peo-
ple learn from one another while simultaneously decreas-
ing the reliance on specific developers.

Static Code Analysis

Static code analyzers such as Coverity [9] were used.
The purpose of this type of tool is to inspect code to de-
termine if there are conditions the code can enter that may
lead to unexpected behavior. For example, if a variable is

Proceedings of IPAC2011, San Sebastián, Spain MOPZ013

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

A09 Muon Accelerators and Neutrino Factories 851 C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

Map: Spill #1

Map: Spill #2

Reduce: All Spills
Input

Simulation

Simulation

Ouput

Digitization

Digitization

Reconstruction

Reconstruction

Histogram

Figure 1: An visual representation of a MAUS control macro that illustrates the data flow.

not initialized and there is a way for the variable to be used
that would lead to a segmentation fault, this tool will alert
the user.

The static code analyzer finds problems of varying de-
grees of severity and human intervention is required to
categorize them. Given that, it is inefficient to use static
code analyzers on legacy code since it takes an unrealistic
amount of time to process the wide range of errors. The op-
timal use case is only to rectify problems observed in new
code, thus incrementally improving the code base.

Unit Tests

Unit tests are small pieces of code that test other small
pieces of code. They are meant to be granular, determin-
istic, and repeatable. Their purpose is to allow the person
developer to know if they have broken preexisting code.
These tests aid in creating releases since one can verify that
the code is still functional. If bugs are found, new tests are
added to make sure the bug never resurfaces. This type of
development also allows one to quickly narrow down the
source of a problem.

Integration Tests

The entire system is checked by integration tests that ex-
ecute at the application level. For example, a large statistics
simulation could be used to verify that physics quantities
have not changed within statistical uncertainties.

Continuous Integration

Jenkins [10] performs continuous integration tests of the
code. This tool runs the test suite in a number of differ-
ent installation environments every time code is committed.
A distributed version control system called Bazaar [11] is
used and code from every user is tested before it becomes
communal.

These tools have been vital to the project since devel-
opers are alerted to broken code. Jenkins is able to try to
compile and test the code on a wide range of Linux and
Mac platforms to ensure that the code can be deployed to
any system. Continuous integration complements unit tests
because the frequent running of unit tests allows code de-
velopers to know instantly where and when a problem was

introduced into the code base.

Release Cycle

Code that has been tested as described above is period-
ically released. Major releases occur every few months
and minor releases are biweekly. The limiting factor on
the timescale for minor releases is how long it takes to de-
velop and test new code. This quick release cycle means
that bugs are quickly resolved.

FUTURE

The MAUS effort within the MICE experiment has
proven to be a successful collaboration physicists and soft-
ware engineers. There are currently about ten active devel-
opers working as a team and using a wide range of tools and
methods. A wealth of knowledge and experience exists in
the software engineering community and taking advantage
of that knowledge has helped MICE.

REFERENCES

[1] S. Geer, “Muon Colliders and Neutrino Factories”, Annu.
Rev. Nucl. Part. Sci. (2009)

[2] H. Shropper, “Advances of accelerator physics and technolo-
gies”, p. 359 (1993)

[3] Zagel et. al., Complementary Methods of Transverse Emmi-
tance Measurement, BIW (2008)

[4] C. Rogers et. al., ”Simulation of MICE using G4MICE”,
EPAC (2006)

[5] M. Fowler, K. Beck, John Brant, W. Opdyke and D.Roberts,
“Refactoring: Improving the Design of Existing Code”
(1999)

[6] http://maus.rl.ac.uk

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters”, Google Public Note, OSDI
(2004)

[8] http://www.swig.org/

[9] http://www.coverity.com

[10] http://jenkins-ci.org/

[11] http://bazaar.canonical.com/

MOPZ013 Proceedings of IPAC2011, San Sebastián, Spain

852C
op

yr
ig

ht
c ○

20
11

by
IP

A
C

’1
1/

E
PS

-A
G

—
cc

C
re

at
iv

e
C

om
m

on
sA

tt
ri

bu
tio

n
3.

0
(C

C
B

Y
3.

0)

03 Linear Colliders, Lepton Accelerators and New Acceleration Techniques

A09 Muon Accelerators and Neutrino Factories

