Author: Riddone, G.
Paper Title Page
MOOCA02 Two Beam Test Stand Experiments in the CTF3 Facility 29
 
  • W. Farabolini, F. Peauger
    CEA/DSM/IRFU, France
  • J. Barranco, S. Bettoni, B. Constance, R. Corsini, M. Csatari, S. Döbert, A. Dubrovskiy, C. Heßler, T. Persson, G. Riddone, P.K. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  • D. Gudkov, A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • M. Jacewicz, T. Muranaka, A. Palaia, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  The CLEX building in the CTF3 facility is the place where essential experiments are performed to validate the Two-Beam Acceleration scheme upon which the CLIC project relies. The Drive Beam enters the CLEX after being recombined in the Delay loop and the Combiner Ring in intense beam trains of 24 A – 150 MeV lasting 140 ns and bunched at 12 GHz, although other beam parameters are also accessible. This beam is then decelerated in dedicated structures installed in the Test Beam Line (TBL) and in the Two-Beam Test Stand (TBTS) aimed at delivering bursts of 12 GHz RF power. In the TBTS this power is used to generate a high accelerating gradient of 100 MV/m in specially designed accelerating structures. To assess the performances of these structures a probe beam is used, produced by a small Linac. We reported here the various experiences conducted in the TBTS making use of the versatility the probe beam and of dedicated diagnostics.  
slides icon Slides MOOCA02 [3.003 MB]  
 
MOPC002 Flow Induced Vibrations of the CLIC X-band Accelerating Structures 65
 
  • T.K. Charles, K. Ryan
    Monash University, Melbourne, Australia
  • M.J. Boland
    ASCo, Clayton, Victoria, Australia
  • G. Riddone
    CERN, Geneva, Switzerland
  • A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
 
  Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure's motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualisation and wavelet analysis.  
 
MOPC012 Fabrication of the CERN/PSI/ST X-band Accelerating Structures 86
 
  • M.M. Dehler, A. Citterio, R. Zennaro
    PSI, Villigen, Switzerland
  • S. Atieh, D. Gudkov, S. Lebet, G. Riddone, J. Shi
    CERN, Geneva, Switzerland
  • G. D'Auria, C. Serpico
    ELETTRA, Basovizza, Italy
 
  Within a collaboration between CERN, PSI and Sincrotrone Trieste (ST), a multi- purpose X-band accelerating structure has been designed and fabricated, used for high gradients tests in the CLIC structure testing program and in the FEL projects of PSI and ST. The structure has 72 cells with a phase advance of 5 pi/6 and includes upstream and downstream wakefield monitors to measure the beam alignment. The SLAC mode launcher design is used to feed it with RF power. Following the CERN fabrication procedures for high-gradient structure, diffusion bonding and brazing in hydrogen atmosphere is used to assemble the cells. After tuning, a vacuum bakeout is required before the feedthroughs for the wake field monitors are welded in as a last step. We describe the experiences gained in finishing the first two structures out of a series of four and present the results from the RF tuning and low level RF tests.  
 
MOPC037 Engineering Design and Fabrication of X-band Damped Detuned Structure for the CLIC Study 154
 
  • V. Soldatov, D. Gudkov, A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
  • S. Atieh, A. D'Elia, A. Grudiev, G. Riddone
    CERN, Geneva, Switzerland
  • R.M. Jones, V.F. Khan
    UMAN, Manchester, United Kingdom
 
  A Damped Detuned Structure (DDS), known as CLICDDSA*, has been designed for the Compact Linear Collider (CLIC) study, and is presently under fabrication. The wakefield in DDS structures is damped using a combination of detuning the frequencies of beam-excited higher order modes and by light damping, through slot-coupled manifolds. The broad principles of the design are similar to that used in the NLC/GLC**. This serves as an alternative to the present baseline CLIC design which relies on heavy damping. CLICDDSA is conceived to be tested for its capacity to sustain high gradients at CERN. This structure operates with a 120 degrees phase advance per cell. We report on engineering design and fabrication details of the structure consisting of 24 regular cells plus 2 matching cells at both ends, all diffusion bonded together. This design takes into account practical mechanical engineering issues and is the result of several optimizations since the earlier CLICDDS designs.
* V. F. Khan et al., “Recent Progress on a Manifold Damped and Detuned Structure for CLIC”, Proc. of IPAC10, WEPE032, p. 3425 (2010).
** R.M. Jones et al., Phys. Rev. STAB 9, 102001 (2006).
 
 
MOPC038 Engineering Design and Fabrication of Tapered Damped X-band Accelerating Structures 157
 
  • A. Solodko, D. Gudkov, A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
  • S. Atieh, A. Grudiev, G. Riddone, M. Taborelli
    CERN, Geneva, Switzerland
 
  The accelerating structures (AS) are one of the main components of the Compact LInear Collider (CLIC), under study at CERN. Each AS contains about 30 copper disks, which form the accelerating cavity. A fully featured AS is very challenging and requires several technologies. Different damping methods, waveguides, vacuum manifolds, slots and choke, result in various design configurations. In the CLIC multibunch AS, called TDS (Tapered Damped Structure), each cell is damped by its four waveguides, which are extended by channels machined in dedicated external vacuum manifolds. The manifolds combine few functions such as damping, vacuum pumping and cooling. Silicon carbide absorbers, fixed inside of each manifold, are required for effective damping of High Order Modes. CERN is producing X-band RF structures in close collaboration with a large number of laboratories taking advantage of their large expertise and test facilities. The fabrication includes several steps from the machining to the final assembly, including quality controls. This paper describes the engineering design and fabrication procedure of the X-band AS with damping material, by focusing on few technical solutions.  
 
MOPC052 Engineering Design and Fabrication of X-band RF Components 196
 
  • M. Filippova, A. Olyunin, V. Soldatov, A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • S. Atieh, G. Riddone, I. Syratchev
    CERN, Geneva, Switzerland
 
  The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for accelerating structure testing. X-band klystron test facilities at 11.424 GHz are operated at SLAC and at KEK, and these facilities are used by CLIC study in the frame of the X-band structure collaboration for testing accelerating structures scaled to that frequency*. Generally RF components are used in the transmission and the transformation of radio frequency signals generated by the power supply. The operating range of the devices accommodates the frequencies from 11.424 to 11.9942 GHz. RF components are needed for the Klystron test stand at CERN, and also for the X-FEL projects at PSI and Sincrotrone Trieste. Currently CERN is ordering tens of these companies to industry. The engineering design of the RF components (high power and compact loads, bi-directional couplers, X-band splitters, hybrids, phase shifters, variable power attenuators) and the main fabrication processes are presented here.
* K.M. Schirm et al., “A 12 GHZ RV Power source for the CLIC study”, Proc. of IPAC’10, THPEB053, p. 3990 (2010).
 
 
TUPC008 CLIC Two-Beam Module for the CLIC Conceptual Design and Related Experimental Program 1003
 
  • A. Samoshkin, D. Gudkov, A. Solodko
    JINR, Dubna, Moscow Region, Russia
  • G. Riddone
    CERN, Geneva, Switzerland
 
  The Compact LInear Collider (CLIC), being studied at CERN, involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two main linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micro-precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three modules have to be produced in parallel for tests in the CLIC Experimental Area with beam. This paper is focused on the design of the different technical systems and integration issues of the two-beam module. The experimental program for the prototype modules is also recalled.  
 
TUPC012 Fabrication and Validation of the Prototype Supporting System for the CLIC Two-beam Modules 1015
 
  • N. Gazis, G. Riddone, S. griffet
    CERN, Geneva, Switzerland
  • A. Samoshkin
    JINR, Dubna, Moscow Region, Russia
 
  The Compact LInear Collider (CLIC), currently under study at CERN, aims at the development of a Multi-TeV e+ e- collider and relies upon a novel two-beam acceleration concept. In the two-beam acceleration, the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, and it is transferred to a parallel high energy main beam. The two-beam modules are the smallest repetitive units which compose the two linacs. The RF structures are the most precise components and they are mounted and aligned on specially developed supporting system, which provides stability and quick re-positioning. The supporting girders have stringent stiffness and damping requirements, imposed by beam physics requirements. In addition, several constraints, such as allocated space and weight limitation have to be taken into consideration. This paper describes different girder configurations following various fabrication techniques and materials. Extensive qualification measurements have been performed on the first prototype units, and the main results are also presented.  
 
TUPC018 Progress on Modelling of the Thermo-Mechanical Behavior of the CLIC Two-Beam Module 1033
 
  • R.J. Raatikainen, K. Osterberg
    HIP, University of Helsinki, Finland
  • T.O. Niinikoski, G. Riddone
    CERN, Geneva, Switzerland
 
  The luminosity goal of the CLIC collider, currently under study, imposes micrometer mechanical stability of the 2-m long two-beam modules, the shortest repetitive elements of the main linacs. These modules will be exposed to variable high power dissipation during operation resulting in mechanical distortions in and between module components. The stability of the CLIC module will be tested in laboratory conditions at CERN in a full-scale prototype module. In this paper, the FEA model developed for CLIC prototype module is described. The thermal and structural results for the new module configuration are presented considering the thermo-mechanical behavior of the CLIC collider in its primary operation modes. These results will be compared to the laboratory measurements to be done during 2011 and 2012 with the full-scale prototype module. The experimental results will allow for better understanding of the module behaviour and they will be propagated back to the present thermo-mechanical model.  
 
TUPS098 Machining and Characterizing X-band RF-structures for CLIC 1768
 
  • S. Atieh, M. Aicheler, G. Arnau-Izquierdo, A. Cherif, L. Deparis, D. Glaude, L. Remandet, G. Riddone, M. Scheubel
    CERN, Geneva, Switzerland
  • D. Gudkov, A. Samoshkin, A. Solodko
    JINR, Dubna, Moscow Region, Russia
 
  The Compact Linear Collider (CLIC) is currently under study at CERN as a potential multi-TeV e+e– collider. The manufacturing and assembling tolerances for making the required RF components are essential for CLIC to perform efficiently. Machining techniques are relevant to the construction of ultra-high-precision parts for the Accelerating Structures (AS). Optical-quality turning and ultra-precision milling using diamond tools are the main manufacturing techniques identified to produce ultra-high shape accuracy parts. A shape error of less than 5 micrometres and roughness of Ra 0.025 are achieved. Scanning Electron Microscopy (SEM) observation as well as sub-micron precision Coordinate Measuring Machines (CMM), roughness measurements and their crucial environment were implemented at CERN for quality assurance and further development. This paper focuses on the enhancements of precision machining and characterizing the fabrication of AS parts.  
 
TUPS099 A Study of the Surface Quality of High Purity Copper after Heat Treatment 1771
 
  • M. Aicheler, G. Arnau-Izquierdo, S. Atieh, S. Calatroni, S. Lebet, G. Riddone, A. Samoshkin
    CERN, Geneva, Switzerland
 
  The manufacturing flow of accelerating structures for the compact linear collider, based on diamond-machined high purity copper components, include several thermal cycles (diffusion bonding, brazing of cooling circuits, baking in vacuum, etc.). The high temperature cycles may be carried out following different schedules and environments (vacuum, reducing hydrogen atmosphere, argon, etc.) and develop peculiar surface topographies which have been the object of extended observations. This study presents and discusses the results of scanning electron microscopy (SEM) and optical microscopy investigations.