Author: Nadji, A.
Paper Title Page
THPC043 Status of SESAME Project 2999
 
  • A. Nadji
    SESAME, Amman, Jordan
 
  This paper reports on the progress which has been made on the construction of the SESAME accelerator complex. The construction of the shielding wall has been finished on March 2011. According to plan, the preparation works and tenders of the conventional facilities have been launched such as the cooling system, electrical distribution systems, PSS system and so on. The commissioning of the Microtron at full energy and the installation of the booster are the next millstones to accomplish. The booster upgrade plan has started which consists of replacing all bending magnets vacuum chamber with new one, BPM Libera Electronics, new control system based on EPICS, new timing system, new electronics for tune measurement. The site acceptance test of the new power supplies of the booster with their tracking electronics is planned to take place in July 2011. The magnet system of the storage ring has been reviewed and the manufacturing tendering is foreseen before the end of 2011.  
 
WEPC050 New Optics for the SOLEIL Storage Ring 2124
 
  • P. Brunelle, F. Briquez, A. Loulergue, O. Marcouillé, A. Nadji, L.S. Nadolski, M.-A. Tordeux, J.F. Zhang
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL, the French 2.75GeV synchrotron light source is delivering photons to 24 beam lines and is presently equipped with 22 insertion devices (ID) including a high field and small gap in-vacuum wiggler*. This paper presents the continuous work performed to reduce the strong non linear effects of several IDs. On one side, the ID defaults have been precisely identified using on-beam measurements, and magnetic correction developments are going on, especially for the in-vacuum wiggler and for the 10m long HU640 undulator. On the other side, a new optics has been optimised in terms of beta-functions (at the ID location) and non linear dynamics in order to improve the injection efficiency and the beam lifetime in the presence of IDs. The modified optics has been used daily in operation since November 2010 and ensures a beam lifetime greater than 10h for a 400mA stored beam with the users ID configuration. In parallel, an extensive experimental optimization has been performed to prepare the operation with an additional quadrupole triplet that provides double low vertical beta functions in one long straight section that will accommodate two canted in-vacuum insertion devices**.
* O. Marcouillé et al., IPAC10, p. 3102 (2010).
** A. Loulergue et al., IPAC10, p. 2496 (2010).
 
 
THPC005 First Measurements with a Kicked Off Axis Bunch for Pseudo Single Bunch Mode Studies at SOLEIL 2912
 
  • L.S. Nadolski, J.-P. Lavieville, P. Lebasque, A. Nadji, J.P. Ricaud, M.G. Silly, F. Sirotti
    SOLEIL, Gif-sur-Yvette, France
 
  At SOLEIL, the time resolved French community benefits of single bunch operation few weeks a year. Meanwhile most of the multi-bunch filling pattern based experiments are not possible due to the low photon flux. Following the pioneer work performed at ALS*, a new operation mode is under study at SOLEIL where the storage ring is filled up with a special hybrid mode: ¾ multibunch filling pattern and a single bunch with higher current in the last ¼. The so-called pseudo single bunch-filling pattern is obtained if the closed orbit of the single bunch is not the same as the one of the other bunches. Preliminary results are presented where the pinger magnet time impulse response has been significantly reduced while its frequency was increased from 3 Hz up to 1 kHz. This magnet is used as an additional corrector magnet to change only the single bunch closed orbit. First experimental results observed at one interested beamline are also discussed.
* S. Kwiatkowski et al., “'CAMSHAFT' Bunch Kicker Design for the ALS Storage Ring", Proc. of EPAC2006, THPLS114, p. 3547, (2006).
 
 
THPC006 Experiments to Measure Electron Beam Energy using Spin Depolarization Method on SOLEIL Storage Ring 2915
 
  • J.F. Zhang, L. Cassinari, M. Labat, A. Nadji, L.S. Nadolski, D. Pédeau
    SOLEIL, Gif-sur-Yvette, France
 
  The electron beam energy on SOLEIL storage ring was successfully measured using spin depolarization method after several attempts over the past few years. The experimental results demonstrate that the effective polarization was 91.3%±3% and polarization time was 17±2.3 minutes as expected from the simulation using SLIM code. The beam was depolarized using an AC shaker and the depolarization was monitored using DCCT and beam loss monitors. The beam energy was measured with accuracy up to a few 10-5.  
 
THPC007 Laser Electron Interaction Simulation for the Femtosecond Bunch Slicing on SOLEIL Storage Ring 2918
 
  • J.F. Zhang, M.-E. Couprie, M. Labat, A. Loulergue, A. Nadji
    SOLEIL, Gif-sur-Yvette, France
 
  The interaction of an electron bunch and a laser in a wiggler (modulator) to generate a femtosecond slice is simulated for the slicing project on SOLEIL storage ring, using a code based on Monte-Carlo method and GENESIS. The results from these two codes are consistent with the theoretical values. The maximum modulated energy of the electron bunch and the number of electrons above a certain limit are studied for different wiggler and laser parameters. The transport of the 6D distribution of the sliced bunch from the modulator to the radiators are simulated using AT (Accelerator Toolbox) and ELEGANT, with synchrotron radiation on and taking into account the collective effects of the sliced bunch core.  
 
THPC044 Operation and Performance Upgrade of the Soleil Storage Ring 3002
 
  • A. Nadji, P. Brunelle, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, J.-F. Lamarre, P. Lebasque, A. Loulergue, P. Marchand, L.S. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL delivers photons to 24 beamlines. Up to 22 very diverse insertion devices (IDs) are now installed on the storage ring, and 4 more will come by summer 2011, including a Cryogenic undulator and an electromagnetic/permanent magnet helical undulator, both designed and built at SOLEIL. Work is continuing on beam dynamics and magnetic corrections to reduce the nonlinear effects of all these IDs. A new optics incorporating an additional quadrupole triplet in one long straight section has been successfully tested and will be put in operation by fall 2011. A new coupling correction will also be implemented to maintain the ratio of the vertical to the horizontal emittances at 1% for any IDs configuration. The electron beam orbit stability has been significantly improved reaching a residual noise of 300 nm RMS. Photon LIBERA modules of X-BPM located on the bends, will be integrated soon in the orbit feedback loops. 4905 hours have been delivered in 2010 to the beamlines with an availability of 96.3%. The user operation with the maximum current of 500 mA is foreseen to start by fall 2011, after the completion of the radiation safety tests of the beamlines.