Author: Mertens, V.
Paper Title Page
TUPC137 UFOs in the LHC 1347
 
  • T. Baer, M.J. Barnes, B. Goddard, E.B. Holzer, J.M. Jimenez, A. Lechner, V. Mertens, E. Nebot Del Busto, A. Nordt, J.A. Uythoven, B. Velghe, J. Wenninger, F. Zimmermann
    CERN, Geneva, Switzerland
 
  One of the major known limitations for the performance of the Large Hadron Collider are so called UFOs (”Unidentified Falling Objects”). UFOs were first observed in July 2010 and have since caused numerous protection beam dumps. UFOs are thought to be micrometer sized dust particles which lead to fast beam losses with a duration of about 10 turns when they interact with the beam. In 2011, the diagnostics for such events was significantly improved which allows estimates of the properties, dynamics and production mechanisms of the dust particles. The state of knowledge and mitigation strategies are presented.  
 
THPS055 Controlling Beamloss at Injection into the LHC 3553
 
  • B. Goddard, F. Alessio, W. Bartmann, P. Baudrenghien, V. Boccone, C. Bracco, M. Brugger, K. Cornelis, B. Dehning, A. Di Mauro, L.N. Drosdal, E.B. Holzer, W. Höfle, R. Jacobsson, V. Kain, M. Meddahi, V. Mertens, A. Nordt, J.A. Uythoven, D. Valuch, S. Weisz, E.N. del Busto
    CERN, Geneva, Switzerland
  • R. Appleby
    UMAN, Manchester, United Kingdom
 
  Losses at injection into the superconducting LHC can adversely affect the machine performance in several important ways. The high injected beam intensity and energy mean that precautions must be taken against damage and quenches, including collimators placed close to the beam in the injection regions. Clean injection is essential, to avoid spurious signals on the sensitive beam loss monitoring system which will trigger beam dumps. In addition, the use of the two injection insertions to house downstream high energy physics experiments brings constraints on permitted beam loss levels. In this paper the sources of injection beam loss are discussed together with the contributing factors and various issues experienced in the first full year of LHC operation. Simulations are compared with measurement, and the implemented and planned mitigation measures and diagnostic improvements are described. An outlook for future LHC operation is given.