Author: Lebec, G.
Paper Title Page
THPC009 Performance and Upgrade of the ESRF Light Source 2924
 
  • J.-L. Revol, J.C. Biasci, J-F. B. Bouteille, J. Chavanne, F. Ewald, L. Farvacque, A. Franchi, G. Gautier, L. Goirand, M. Hahn, L. Hardy, J. Jacob, J.M. Koch, M.L. Langlois, G. Lebec, J.M. Mercier, T.P. Perron, E. Plouviez, K.B. Scheidt, V. Serrière
    ESRF, Grenoble, France
 
  The European Synchrotron Radiation Facility (ESRF) is now fully engaged in a large Upgrade Programme of its infrastructure, beamlines and X ray source. In this context, a first set of 10 insertion device straight sections are being lengthened from five to six metres; a number of them will be operated with canted undulators. The insertion devices are themselves subject to an ambitious development programme to fulfil the scientific requirements. The Radio Frequency system upgrade has started with the replacement of the booster klystron-based transmitter by high power solid state amplifiers, and the development of HOM damped cavities operating at room temperature. A completely new DC-AC orbit stabilization system using 224 BPMs and 96 orbit steerers is currently being commissioned. The upgrade is conducted while keeping, and even improving, routine performance for the user service. In particular the recent installation of new skew quadrupole power supplies allows routine operation with ultra low vertical emittance. This paper reports on the present operation performance of the source, highlighting recent developments and those still to come.  
 
THPC153 Recent Progress in Insertion Devices at the ESRF 3245
 
  • J. Chavanne, G. Lebec, C. Penel, F. Revol
    ESRF, Grenoble, France
 
  Insertion Device activities at the ESRF are presently driven by the upgrade of more than ten beamlines. The concept of canted undulators is part of the requirements in a number of cases. Permanent Magnet Steerers (PMS) will be used to create canting angles of up to 5.4 mrad. The magnetic structure of PMS has been fully optimized to minimise space occupancy and magnetic perturbations induced on neighbouring undulators. The measured field quality of PMS recently constructed will be presented. The development of undulators dedicated to high photon energy is still being pursued. Following on from the successful operation since 2008 of a first Cryogenic Permanent Magnet Undulator (CPMU) installed in the ID6 beamline, a second device has been constructed. This 2 m long device has a period of 18 mm and will be operated at 145 K. The field measurements at cryogenic temperature are discussed hereafter.