Author: Kobayashi, K.
Paper Title Page
WEPC068 Amplitude Dependent Betatron Oscillation Center Shift by Non-linearity and Beam Instability Interlock 2178
 
  • T. Nakamura, K. Kobayashi, J. Schimizu, T. Seike, K. Soutome, M. Takao
    JASRI/SPring-8, Hyogo-ken, Japan
  • T. Hara
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  The center of the betatron oscillation in storage rings shifts as the amplitude of the oscillation increases. This effect is produced by non-linear components like sextupole magnets with its first-order perturbation. This shift can be observed as the shift of the closed orbit with usual slow beam position monitor (BPM) for closed orbit measurement. At the SPring-8 storage ring, the insertion devices (IDs) have their dedicated BPMs for monitoring the beam axis in the IDs. If some amount of the shift of beam axis is observed, the beam is aborted to avoid the damage by the irradiation of the ring components by ID radiation. When a betatron oscillation is excited by a beam transverse instability, the beam axis also oscillates and might produce the damage. Though it is not easy to detect the oscillation amplitude in various bunch current and filling patterns like in SPring-8, the oscillation produces the shift of the center of the betatron oscillation and can be observed by the BPM of IDs, and the beam is aborted. Calculation, tracking simulation and observation will be reported.  
 
THPC143 Beam-based Alignment for Injection Bump Magnets of the Storage Ring using Remote Tilt-control System 3221
 
  • K. Fukami, K. Kobayashi, C. Mitsuda, T. Nakamura, K. Soutome
    JASRI/SPring-8, Hyogo-ken, Japan
 
  Stored beam is oscillated in vertical if the injection-bump magnets have alignment error in rotation around the beam-axis (tilt). In addition, even if the tilt is negligibly small, the beam out of the median plane is kicked in vertical direction. Also, there is a small long-term drift of the vertical beam positions in the bump magnets, which causes the gradual increase of the oscillation. We have already developed a remote tilt-control system to make a smooth realignment*. To observe the oscillation, the beam position was measured bunch-by-bunch and turn-by-turn by using a bunch-by-bunch feedback system** with high resolution strip-line type beam position monitor. To obtain responses to the tilts of each magnet, the oscillations were measured under the condition that the magnets were tilted intentionally. Tilt errors were calculated with least-squares method using the responses. In order to confirm the source of the residual oscillation, a frequency analysis was carried out with FFT method using the position data from 1st to 128th turns. We succeeded in suppressing the vertical oscillation to sub-microns order, the value of less than one tenth of the beam size.
* K. Fukami et al., Proc. of EPAC'08, p. 2172 (2008).
** T. Nakamura et al., Proc. of ICALEPCS'05, PO2.022-2 (2005).