Author: Hill, C.
Paper Title Page
MOPC106 Study of the Variation of Transverse Voltage in the 4 Rod Crab Cavity for LHC 322
 
  • B.D.S. Hall, P.K. Ambattu, G. Burt, C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • P. Goudket, C. Hill
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The planned high luminosity upgrade to LHC will utilise crab cavities to rotate the beam in order to increase the luminosity in the presence of a finite crossing angle. A compact design is required in order for the cavities to fit between opposing beam-lines. In this paper we discuss we discuss one option for the LHC crab cavity based on a 4 rod TEM deflecting cavity. Due to the large transverse size of the LHC beam the cavity is required to have a large aperture while maintaining a constant transverse voltage across the aperture. The cavity has been optimised to minimise the variation of the transverse voltage while keeping the peak surface electric and magnetic fields low for a given kick. This is achieved while fitting within the strict design space of the LHC. The variation of deflecting voltage across the aperture has been studied numerically and compared with numerical and analytical estimates of other deflecting cavity types. Performance measurements an aluminium prototype of this cavity are presented and compared to the simulated design.  
 
WEPC158 The EMMA Accelerator, A Diagnostic Systems Overview 2355
 
  • R.J. Smith, M. Dufau, C. Hill, J.K. Jones, A. Kalinin, L. Ma, P.A. McIntosh, B.D. Muratori, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • N. Bliss, G. Cox, A. Gallagher, A. Oates
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • R.G. Borrell
    WareWorks Ltd, Manchester, United Kingdom
  • J.L. Crisp
    FRIB, East Lansing, Michigan, USA
  • K.M. Hock, D.J. Holder
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M.G. Ibison, I. Kirkman
    The University of Liverpool, Liverpool, United Kingdom
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  The ‘EMMA’ Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) international project is currently being commissioned at Daresbury Laboratory, UK. This accelerator has been equipped with a number of diagnostic systems to facilitate this. These systems include a novel time-domain-multiplexing BPM system, moveable screen systems, a time-of-flight instrument, Faraday cups, and injection/extraction tomography sections to analyse the single bunch beams. An upgrade still to implement includes the installation of a fast wall current monitor. This paper gives an overview of these systems and shows some data and results that have contributed to the successful demonstration of a serpentine acceleration by this novel accelerator.  
 
THPC130 A 160 keV Photocathode Electron Gun Test Tacility 3188
 
  • L.B. Jones, B.D. Fell, C. Hill, J.W. McKenzie, K.J. Middleman, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.J. Cash
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The ALICE ERL* at Daresbury Laboratory is a prototype 4th generation free-electron laser light source operating at IR wavelengths. An upgrade to the DC photoinjector gun has been designed and partially-constructed, but due to installation postponement, the system will be used for photocathode physics experiments. The re-designed gun will operate at 160 keV. The gun and photocathode preparation facility (PPF) will be assembled with a diagnostic beamline, supporting research towards high-brightness electron beams based on GaAs technology. Combining an external PPF with a load-lock facility allows the rapid exchange of photocathodes, thus permitting the testing of various different photocathode heterostructures, and fine control of the cleaning and activation processes applied during preparation. The diagnostics beamline will include a transverse kicker to study bunch length, and a dipole magnet for beam energy and energy spread measurements. Various horizontal and vertical slit and screen assemblies allow for emittance measurement, so providing full 6-D characterisation of the electron bunches generated. A current transformer and Faraday cups support bunch charge measurements.
* Accelerators and Lasers In Combined Experiments electron Energy-Recovery Linac