Author: Harper, G.
Paper Title Page
WEPC152 Android Based Mobile Monitoring System for EPICS Networks: Vacuum System Application* 2337
 
  • I. Badillo, I. Arredondo, M. Eguiraun, J. Feuchtwanger, G. Harper
    ESS-Bilbao, Zamudio, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
When cabling is not really needed for performance reasons, wireless monitoring is a good choice for large scientific facilities like particle accelerators, due to the quick implementation. There are several wireless flavors: ZigBee, WiFi etc. depending on requirements of specific application. In this work, a wireless monitoring system for EPICS based on an Android device is presented. The task is to monitor the vacuum control system of ISHN project at ESSBilbao, where control system variables are acquired over the network and published in a mobile device. This allows the operator to check process variables everywhere the signal spreads. In this approach, a Python based server is continuously getting EPICS variables via CA protocol and sending them through a WiFi network using ICE middleware, a toolkit oriented to develop distributed applications. Finally, the mobile device reads and shows the data to the operator. The security of the communication is ensured by a limited WiFi signal spread, following the same idea as in NFC for larger distances. With this approach, local monitoring and control applications are easily implemented, useful in starting up and maintenance stages.
 
 
WEPC153 ISHN Ion Source Control System Overview and Future Developments 2340
 
  • M. Eguiraun, I. Arredondo, J. Feuchtwanger, G. Harper, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • S. Varnasseri
    ESS Bilbao, Derio, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
ISHN project consist on a Penning ion source which will deliver up to 65 mA of H beam pulsed at 50 Hz with a diagnostics vessel for beam testing purposes. The present work summarizes the control system of this research facility, and presents its future developments. ISHN consist of several power supplies for plasma generation and beam extraction, including auxiliary equipment and several diagnostics elements. The control system implemented with LabVIEW is based on PXI systems from National Instruments, using two PXI chassis connected through a dedicated fiber optic link between HV platform and ground. Source operation is managed by a real time processor, while additional tasks are performed by means of an FPGA. In addition, the control system uses a MySQL database for data logging, by means of a LabVIEW application connected to such DB. The integration of EPICS into the control system by deploying a Channel Access Server is the ongoing work, several alternatives are being tested. Finally, a high resolution synchronization system has been designed, for generating timing for triggers of plasma generation and extraction as well as data acquisition for beam diagnostics.