Author: Guerrero, A.
Paper Title Page
WEPC173 LHC Magnet Quench Test with Beam Loss Generated by Wire Scan 2391
 
  • M. Sapinski, F. Cerutti, K. Dahlerup-Petersen, B. Dehning, J. Emery, A. Ferrari, A. Guerrero, E.B. Holzer, M. Koujili, A. Lechner, E. Nebot Del Busto, M. Scheubel, J. Steckert, A.P. Verweij, J. Wenninger
    CERN, Geneva, Switzerland
 
  Beam losses with millisecond duration have been observed in the LHC in 2010 and 2011. They are expected to be provoked by dust particles falling into the beam. These losses could compromise the LHC availability if they provoke quenches of superconducting magnets. In order to investigate the quench limits for this loss mechanism, a quench test using the wire scanner has been performed, with the wire movement through the beam mimicking a loss with similar spatial and temporal distribution as in the case of dust particles. This paper will show the conclusions reached for millisecond-duration dust-provoked quench limits. It will include details on the maximum energy deposited in the coil as estimated using FLUKA code, showing good agreement with quench limit estimated from the heat transfer code QP3. In addition, information on the damage limit for carbon wires in proton beams will be presented, following electron microscope analysis which revealed strong wire sublimation.  
 
MOPS009 Probing Intensity Limits of LHC-type Bunches in the CERN SPS with Nominal Optics 610
 
  • B. Salvant, G. Adrian, D.J. Allen, O. Andujar, T. Argyropoulos, J. Axensalva, J. Baldy, H. Bartosik, S. Cettour Cave, F. Chapuis, J.F. Comblin, K. Cornelis, D.G. Cotte, K. Cunnington, H. Damerau, M. Delrieux, J.L. Duran-Lopez, A. Findlay, J. Fleuret, F. Follin, P. Freyermuth, H. Genoud, S.S. Gilardoni, A. Guerrero, S. Hancock, K. Hanke, O. Hans, R. Hazelaar, W. Höfle, L.K. Jensen, J. Kuczerowski, Y. Le Borgne, R. Maillet, D. Manglunki, S. Massot, E. Matli, G. Metral, B. Mikulec, E. Métral, J.-M. Nonglaton, E. Ovalle, L. Pereira, F.C. Peters, A. Rey, J.P. Ridewood, G. Rumolo, J.L. Sanchez Alvarez, E.N. Shaposhnikova, R.R. Steerenberg, R.J. Steinhagen, J. Tan, B. Vandorpe, E. Veyrunes
    CERN, Geneva, Switzerland
 
  Some of the upgrade scenarios of the high-luminosity LHC require large intensity per bunch from the injector chain. Single bunch beams with intensities of up to 3.5 to 4·1011 p/b and nominal emittances were successfully produced in the PS Complex and delivered to the SPS in 2010. This contribution presents results of studies with this new intense beam in the SPS to probe single bunch intensity limitations with nominal gamma transition. In particular, the vertical Transverse Mode Coupling Instability (TMCI) threshold with low chromaticity was observed at 1.6·1011 p/b for single nominal LHC bunches in the SPS. With increased vertical chromaticity, larger intensities could be injected, stored along the flat bottom and accelerated up to 450 GeV/c. However, significant losses and/or transverse emittance blow up were then observed. Longitudinal and transverse optimization efforts in the PSB, PS and SPS were put in place to minimize this beam degradation and succeeded to obtain single 2.3·1011 p/b LHC type bunches with satisfying parameters at extraction of the SPS.