Author: Groening, L.
Paper Title Page
MOPS028 An Ion Beam Matching to a Linac Accelerating-focusing Channel 661
 
  • A. Orzhekhovskaya, W.A. Barth, G. Clemente, L.A. Dahl, P. Gerhard, L. Groening, M. Kaiser, M.T. Maier, S. Mickat, B. Schlitt, H. Vormann, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by HIC for FAIR
A modern linear accelerator of ions is a long chain of different accelerating-focusing structures. The design of new linacs, as well as an upgrade and optimization of operating facilities, requires precise and reliable beam matching with the subsequent sections. Proper matching of the beam to the channel allows to improve the performance of the whole linac and to reduce the specific costs. Additionally it helps to avoide particle loss in high energy high intensity linacs. Generally a matching algorithm combines precisely measured or calculated accelerating-focusing external fields and experimentally obtained details of the beam parameters with an advanced code for beam dynamics simulations including space charge effects. Experimental results are introduced into a code as input data. The described algorithm has already been successfully implemented for several GSI projects: an upgrade of the GSI heavy ion linac UNILAC, an ion linac for the cancer therapy, the proton linac for the FAIR facility, a facility for laser acceleration of ions and others. Measured data and results of beam dynamics simulations leading to an achieved improvement of the linac performance are presented.
 
 
WEPC005 Concept for Controlled Transverse Emittance Transfer within a Linac Ion Beam 2007
 
  • L. Groening
    GSI, Darmstadt, Germany
 
  Generally the two transverse emittances of a linac beam are quite similar in size (round beam). However, injection into subsequent rings often imposes stronger limits for the upper allowed value to one of these emittances. Provision of flat linac beams (different transverse emittances) thus can considerable increase the injection efficiency into rings. Round-to-flat transformation has been already demonstrated for electron beams. It was also proposed for angular momentum dominated beams from Electron-Cyclotron-Resonance sources. We introduce a concept to extend the transformation to ion beams that underwent charge state stripping without requiring their extraction from an ECR source. The concept is of special interest for beams from low-charge-state / high-particle-current sources. It can be also applied to stripping of H to proton beams.  
 
WEPS036 First Coupled CH Power Cavity for the FAIR Proton Injector 2565
 
  • R. M. Brodhage, C. Fix, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • G. Clemente, L. Groening
    GSI, Darmstadt, Germany
 
  For the research program with cooled antiprotons at FAIR a dedicated 70 MeV, 70 mA proton injector is required. The main acceleration of this room temperature linac will be provided by six CH cavities operated at 325 MHz. Each cavity will be powered by a 2.5 MW Klystron. For the second acceleration unit from 11.5 MeV to 24.2 MeV a 1:2 scaled model has been built. Low level RF measurements have been performed to determine the main parameters and to prove the concept of coupled CH cavities. For this second tank technical and mechanical investigations have been performed in 2010 to develop a complete technical concept for the manufacturing. In Spring 2011, the construction of the first power prototype has started. The main components of this cavity will be ready for measurements in summer 2011. At that time, the cavity will be tested with a preliminary aluminum drift tube structure, which will allow precise frequency and field tuning. This paper will report on the recent technical development and achievements. It will outline the main fabrication steps towards that novel type of proton DTL. Also first low level RF measurements are expected.  
 
WEPS037 RF Design of a 325 MHz 4-ROD RFQ 2568
 
  • B. Koubek, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
  • L. Groening
    GSI, Darmstadt, Germany
 
  Usually 4-ROD Radio Frequency Quadrupoles (RFQ) are built for frequencies up to 216 MHz. For higher frequencies 4-VANE structures are more common. The advantages of 4-Rod structures, the greater flexibility for tuning and being more comfortable for maintenance, are motivating the development of a 4-Rod RFQ for higher frequencies than 216 MHz. In particular a 325 MHz RFQ with an output energy of 3 MeV is needed for the proton linac for the FAIR project of GSI. This paper reports about the design studies and the latest developments of this RFQ.