Author: Grespan, F.
Paper Title Page
MOPC089 RF Simulations for the QWR Cavities of PIAVE-ALPI 283
 
  • M. Comunian, F. Grespan, A. Palmieri
    INFN/LNL, Legnaro (PD), Italy
 
  The PIAVE-ALPI linac is composed of several families of QWR cavities. In order to have a thorough description of the accelerator in terms of beam dynamics, a detailed field mapping of the accelerating cavities is necessary, including non-linear behavior of the off-axis fields, as well as the steering and dispersion effects due to transverse components. For such a purpose, a set of RF simulation was accomplished, with the codes HFSS and COMSOL. The details about these simulations and the main outcomes and results will be described in this article.  
 
WEPC014 Beam Dynamics Simulations of the PIAVE-ALPI Linac 2034
 
  • M. Comunian, E. Fagotti, F. Grespan, A. Palmieri, A. Pisent, C. Roncolato
    INFN/LNL, Legnaro (PD), Italy
 
  At the Legnaro National Laboratories it is operating a SuperConducting linac for nuclear studies. The ALPI linac is injected either by a XTU tandem, up to 14 MV, or by the s-c PIAVE injector, made with 2 SC-RFQ. The main part of the linac (at the present 64 cavities for a total voltage up to 48 MV) is build up in two branches connected by an achromatic and isochronous U-bend. The PIAVE-ALPI complex is able to accelerate beams up to A/q = 7. The layout of the linac ALPI is, from the point of beam dynamics, quite complex due the presence of RFQs, cavities, dipoles, magnets, etc. These elements behaviors are entirely not linear, so a small change on the settings can induce a big change in the Linac beam dynamics. An automatic tuning procedure and a full field maps description are mandatory to handle a so high number of active components. The program used at this scope is TraceWin that is able to do an envelope simulation and a full multiparticles simulation.