Author: Gai, W.
Paper Title Page
WEPZ014 Upgrade of the Argonne Wakefield Accelerator Facility (AWA): Commissioning of the RF Gun and Linac Structures for Drive Beam Generation 2799
 
  • M.E. Conde, D.S. Doran, W. Gai, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357.
Research at the AWA Facility has been focused on the development of electron beam driven wakefield structures. Accelerating gradients of up to 100 MV/m have been excited in dielectric loaded cylindrical structures operating in the microwave range of frequencies. Several upgrades, presently underway, will enable the facility to explore higher accelerating gradients, and also be able to generate longer RF pulses of higher intensity. The major items included in the upgrade are: (a) a new RF gun with a higher quantum efficiency photocathode will replace the RF gun that has been used to generate the drive bunches; (b) the existing RF gun will be used to generate a witness beam to probe the wakefields; (c) three new L-band RF power stations, each providing 25 MW, will be added to the facility; (d) five linac structures will be added to the drive beamline, bringing the beam energy up from 15 MeV to 75 MeV. The upgraded drive beam will consist of bunch trains of up to 32 bunches spaced by 0.77 ns with up to 100 nC per bunch. The goal of future experiments is to reach accelerating gradients of several hundred MV/m and to extract RF pulses with GW power level.
 
 
WEPZ015 Staging in Two Beam Dielectric Wakefield Accelerators 2802
 
  • J.G. Power, M.E. Conde, W. Gai, C.-J. Jing
    ANL, Argonne, USA
 
  Funding: The work is supported by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 with Argonne National Laboratory.
A new experimental program to demonstrate staging in a two beam dielectric wakefield accelerator (DWA) is being planned at the Argonne Wakefield Accelerator facility. DWA uses a drive beam to generate acceleration fields to accelerate a main beam and is one of the most promising advanced acceleration methods being pursued for a future high-energy physics linear collider. Staging is the ability to use two accelerating modules back to back to accelerate a charged particle bunch and it is one of basic requirements of any acceleration method. In this paper, a new beamline design consisting of a fast kicker to pick pulses from the drive bunch train and deliver them to the individual acceleration modules will be presented.