Author: Freyermuth, P.
Paper Title Page
MOPS013 Transverse Low Frequency Broad-band Impedance Measurements in the CERN PS 622
 
  • S. Aumon
    EPFL, Lausanne, Switzerland
  • P. Freyermuth, S.S. Gilardoni, O. Hans, E. Métral, G. Rumolo
    CERN, Geneva, Switzerland
 
  The base-line scenario for the High-Luminosity LHC upgrade foresees an intensity increase delivered by the injectors. With its 53 years, the CERN PS would have to operate beyond the limit of its performances to match the future requirements. Beam instabilities driven by transverse impedance are an important issue for the operation of high intensity beams as for the high-brightness LHC beams. Measurements of transverse tune dependence with beam intensity were performed at injection kinetic energy 1.4~GeV and at LHC beam extraction momentum 26~GeV/c. This allows deducing the low frequency inductive broad-band impedance of the machine. Then an estimation of the real part of the impedance is made by the rise time measurement of a fast transverse instability believed to be a TMCI type. Those are the first step towards a global machine impedance characterization in order to push forward the performances of the accelerator.  
 
MOPS014 Tune and Space Charge Studies for High-brightness and High-intensity Beams at CERN PS 625
 
  • S.S. Gilardoni, S. Aumon, J. Brenas, P. Freyermuth, A. Huschauer, R. Maillet, E. Matli, R.R. Steerenberg, B. Vandorpe
    CERN, Geneva, Switzerland
  • E. Benedetto
    National Technical University of Athens, Zografou, Greece
 
  The current 1.4 GeV CERN PS injection energy limits the maximum intensity required by the future High-Luminosity LHC. The bare-machine large chromaticity combined with the non-linear space charge forces make high-brightness and high-intensity beams crossing betatron resonances along the injection flat bottom, inducing transverse emittance blow-up and beam losses. A scan of the working point plane {Qx,Qy} was done in order to identify beam destructive resonances, in the framework of a possible 2 GeV injection energy upgrade which would reduce the space charge effect on the tune. Experiments were carried out in order to review the maximum space charge tune shift for which no transverse emittance blow-up is observed. The results of measurements and simulations will be presented in this paper.  
 
MOPS009 Probing Intensity Limits of LHC-type Bunches in the CERN SPS with Nominal Optics 610
 
  • B. Salvant, G. Adrian, D.J. Allen, O. Andujar, T. Argyropoulos, J. Axensalva, J. Baldy, H. Bartosik, S. Cettour Cave, F. Chapuis, J.F. Comblin, K. Cornelis, D.G. Cotte, K. Cunnington, H. Damerau, M. Delrieux, J.L. Duran-Lopez, A. Findlay, J. Fleuret, F. Follin, P. Freyermuth, H. Genoud, S.S. Gilardoni, A. Guerrero, S. Hancock, K. Hanke, O. Hans, R. Hazelaar, W. Höfle, L.K. Jensen, J. Kuczerowski, Y. Le Borgne, R. Maillet, D. Manglunki, S. Massot, E. Matli, G. Metral, B. Mikulec, E. Métral, J.-M. Nonglaton, E. Ovalle, L. Pereira, F.C. Peters, A. Rey, J.P. Ridewood, G. Rumolo, J.L. Sanchez Alvarez, E.N. Shaposhnikova, R.R. Steerenberg, R.J. Steinhagen, J. Tan, B. Vandorpe, E. Veyrunes
    CERN, Geneva, Switzerland
 
  Some of the upgrade scenarios of the high-luminosity LHC require large intensity per bunch from the injector chain. Single bunch beams with intensities of up to 3.5 to 4·1011 p/b and nominal emittances were successfully produced in the PS Complex and delivered to the SPS in 2010. This contribution presents results of studies with this new intense beam in the SPS to probe single bunch intensity limitations with nominal gamma transition. In particular, the vertical Transverse Mode Coupling Instability (TMCI) threshold with low chromaticity was observed at 1.6·1011 p/b for single nominal LHC bunches in the SPS. With increased vertical chromaticity, larger intensities could be injected, stored along the flat bottom and accelerated up to 450 GeV/c. However, significant losses and/or transverse emittance blow up were then observed. Longitudinal and transverse optimization efforts in the PSB, PS and SPS were put in place to minimize this beam degradation and succeeded to obtain single 2.3·1011 p/b LHC type bunches with satisfying parameters at extraction of the SPS.