Author: Fitterer, M.
Paper Title Page
TUPZ001 90 m Optics Commissioning 1795
 
  • S. Cavalier
    LAL, Orsay, France
  • H. Burkhardt, M. Fitterer, G.J. Müller, S. Redaelli, R. Tomás, G. Vanbavinckhove, J. Wenninger
    CERN, Geneva, Switzerland
 
  Special β* = 90 m optics have been developed for the two very high luminosity insertions of the LHC, as a first step towards to allow for very low angle precision measurements of the proton-proton collisions in the LHC. These optics were developed to be compatible with the standard LHC injection and ramp optics. The target value of β* = 90 m is reached by an un-squeeze from the injection β* = 11 m. We describe the implementation of this optics in the LHC and the first experience in the commissioning of these optics.  
 
WEPS101 Lattice Design of a RCS as Possible Alternative to the PS Booster Upgrade 2745
 
  • M. Fitterer, M. Benedikt, H. Burkhardt, C. Carli, R. Garoby, B. Goddard, K. Hanke, H.O. Schönauer
    CERN, Geneva, Switzerland
  • A.-S. Müller
    KIT, Karlsruhe, Germany
 
  In the framework of the LHC Injectors Upgrade (LIU) a new rapid cycling synchrotron as alternative to the PS Booster has been proposed. In this paper we present the lattice constraints and requirement as well as the current status of the RCS lattice design and beam dynamics studies.  
 
WEPS019 Study of a Rapid Cycling Synchrotron to Replace the CERN PS Booster 2523
 
  • K. Hanke, O. Aberle, M. E. Angoletta, B. Balhan, W. Bartmann, M. Benedikt, J. Borburgh, D. Bozzini, C. Carli, P. Dahlen, T. Dobers, M. Fitterer, R. Garoby, S.S. Gilardoni, B. Goddard, J. Hansen, T. Hermanns, M. Hourican, S. Jensen, A. Kosmicki, L.A. Lopez Hernandez, M. Meddahi, B. Mikulec, A. Newborough, M. Nonis, S. Olek, M.M. Paoluzzi, S. Pittet, B. Puccio, V. Raginel, I. Ruehl, H.O. Schönauer, L. Sermeus, R.R. Steerenberg, J. Tan, J. Tückmantel, M. Vretenar, M. Widorski
    CERN, Geneva, Switzerland
 
  CERN’s proton injector chain is undergoing a massive consolidation and upgrade program in order to deliver beams meeting the needs of the LHC Luminosity Upgrade. As an alternative to the upgrade of the existing Proton Synchrotron Booster (PSB), the construction of a Rapid Cycling Synchrotron (RCS) has been studied. This machine would replace the PSB and deliver beams to the LHC as well as to CERN’s rich fixed-target physics program. This paper summarizes the outcome of the feasibility study along with a tentative RCS design.  
 
THPS054 Injection and Extraction Considerations for a 2 GeV RCS at CERN 3550
 
  • W. Bartmann, B. Balhan, J. Borburgh, L. Ducimetière, M. Fitterer, B. Goddard, L. Sermeus
    CERN, Geneva, Switzerland
 
  Conceptual studies have been made for a 2 GeV RCS at CERN as a possible replacement of the four-ring PS Booster. The lattice design has to accommodate suitable straight sections for a 160 MeV H charge exchange injection system, and for a 2 GeV fast extraction system. The design constraints for the injection and extraction systems are described, together with the proposed concepts and potential equipment limitations. In particular, the features of different possible H injection configurations are compared.  
 
THPZ014 LHeC Lattice Design 3714
 
  • M. Fitterer, O.S. Brüning, H. Burkhardt, B.J. Holzer, J.M. Jowett, K.H. Meß, T. Risselada
    CERN, Geneva, Switzerland
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  • A.-S. Müller
    KIT, Karlsruhe, Germany
 
  The Large Hadron Electron Collider (LHeC) aims at lepton-proton and lepton-nucleus collisions with centre of mass energies of 1-2 TeV at ep luminosities in excess of 1033 cm-2 s-1. We present here a lattice design for the electron ring option, which meets the design parameters and also the constraints imposed by the integration of the new electron ring in the LHC tunnel.  
 
THPZ016 Interaction Region Design for a Ring-Ring LHeC 3720
 
  • L.N.S. Thompson, R. Appleby
    UMAN, Manchester, United Kingdom
  • N.R. Bernard
    UCLA, Los Angeles, California, USA
  • M. Fitterer
    KIT, Karlsruhe, Germany
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • M. Klein
    The University of Liverpool, Liverpool, United Kingdom
  • P. Kostka
    DESY Zeuthen, Zeuthen, Germany
  • L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The Large Hadron Electron Collider project is a proposal to study e-p and e-A interactions at the LHC. Using one of the LHC's proton beams, an electron beam of relatively low energy and moderately high intensity provides high luminosity TeV-scale e-p collisions at one of the LHC interaction points, running simultaneously with existing experiments. Two designs are studied; an electron ring situated in the LHC tunnel, and an electron linac. The focus of this paper is on the ring design. Designing an e-p machine presents interesting accelerator physics and design challenges, particularly when considering the interaction region. These include coupled optics, beam separation and unconventional mini-beta focusing schemes. Designs are constrained by an array of interdependent factors, including beam-beam interaction, detector dimensions and acceptance, luminosity and synchrotron radiation. Methods of addressing these complex issues are discussed. The current designs for the LHeC Ring-Ring interaction region and long straight section are presented and discussed, in the context of the project goals and design challenges encountered. Future developments and work are also discussed.