Author: Elsen, E.
Paper Title Page
MOPC085 Quality Assessment for Industrially Produced High-Gradient Superconducting Cavities 274
 
  • F. Schlander, S. Aderhold, E. Elsen, D. Reschke, M. Wenskat
    DESY, Hamburg, Germany
 
  Funding: This work is supported by the Commission of the European Communities under the 7th Framework Programme “Construction of New Infrastructures – Preparatory Phase”, contract number 206711.
A series of some 600 superconducting 1.3 GHz cavities will start being delivered to DESY by industry in early 2012. Although a considerably smaller gradient satisfies the needs for the European XFEL the electro-polished cavities (50% of the delivery) are deemed to be suitable for gradients in excess of 35 MV/m, the performance goal of the International Linear Collider (ILC). Specifically 24 cavities will be supplied without helium tank to enable further investigations. The results may serve to improve overall performance; limitations such as field emission and thermal breakdown of superconductivity ("quench") are still under investigation. For this matter the DESY ILC group has developed tools to monitor aspects of the cavity fabrication. An automated optical mapping system (OBACHT) is being commissioned and will be complemented by software for automated cavity surface feature recognition. For cold RF tests a Second Sound setup for locating the positions of the thermal breakdown is routinely used. These diagnostic tools will give guidance on post-processing cavities for best performance. The current status of these projects will be described.
 
 
WEPZ008 Experimental Plans to Explore Dielectric Wakefield Acceleration in the THz Regime 2781
 
  • F. Lemery, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • C. Behrens, E. Elsen, K. Flöttmann, C. Gerth, G. Kube, B. Schmidt
    DESY, Hamburg, Germany
  • J. Osterhoff
    LBNL, Berkeley, California, USA
  • P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work was supported by the Defense Threat Reduction Agency, Basic Research Award \# HDTRA1-10-1-0051, to Northern Illinois University
Dielectric wakefield accelerators have shown great promise toward high-gradient acceleration. We investigate tow experiments in preparation to explore the performance of cylindrically-symmetric and slab-shaped dielectric-loaded waveguides. The planned experiments at Fermilab and DESY will use unique pulse shaping capabilities offered at these facilities. The superconducting test accelerator at FNAL will ultimately provide flat beams with variable current profiles needed for enhancing the transformer ratio. The FLASH facility at DESY recently demonstrated the generation of a ramped round beam current profile that will enable us to explore the performance of cylindrically-symmetric structures. Finally both of these facilities incorporate superconducting linear accelerator that could generate bunch trains with closely spaced bunches thereby opening the exploration of dynamical effects in dielectric wakefield accelerators. We present the planned layout and simulated experimental performances.