Author: Einfeld, D.
Paper Title Page
MOXAA01 ALBA Synchrotron Light Source Commissioning 1
 
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a 3rd generation Synchrotron Light Source build in Barcelona, Spain. It is a 3 GeV Light Source with a circumference of roughly 270 m, an emittance of 4.4 nmrad and a design current of 400 mA. The storage ring has 24 straight sections from which 19 can be used for the installation of insertion devices, the rest will be used for injection, RF-cavities and diagnostic. The storage ring has been optimized for a high photon flux density for the users. The 3 GeV booster synchrotron with an emittance smaller the 10 nmrad is installed in the same tunnel. The pre injector is a 100 MeV Linac. The project started officially in 2004. The linac is operating since 2008, the booster since 2010 and the first commissioning phase for the storage ring will be finished in June 2011. This presentation gives an overview of the ALBA project with the emphasis on the results of the commissioning of the three accelerators Linac, booster synchrotron and storage ring.  
slides icon Slides MOXAA01 [8.891 MB]  
 
TUPS015 ALBA Storage Ring Vacuum System Commissioning 1551
 
  • E. Al-dmour, D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA booster and storage ring vacuum system installation has been done in 2009, followed by the installation of the RF cavities and the booster to storage transfer line in 2010. Early 2011, the first phase of insertion devices (ID) installation took place, with three narrow gap NEG coated vacuum chambers have been installed, for the use of two Apple-II undulators and one conventional wiggler. On 8th of March 2011, the storage ring commissioning started and it was marked with the achievement of the first turn in the storage ring on the 9th of March and on the 1st of April 2011, 100 mA of beam current has been accumulated. During this period the vacuum system conditioning took place with very good performance. The base pressure without beam was 4·10-10 mbar and the average pressure with 100 mA was 7.7·10-9 mbar. The results of the conditioning together with the latest developments are introduced.  
 
TUPS016 Vacuum System Design for the MAX IV 3 GeV Ring 1554
 
  • E. Al-dmour, D. Einfeld, J. Pasquaud, M. Quispe
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • J. Ahlbäck, M.J. Grabski, P.F. Tavares
    MAX-lab, Lund, Sweden
 
  We describe the conceptual design of the vacuum system of the 3 GeV electron storage ring in the MAX IV facility currently under construction in Lund, Sweden. The standard vacuum chambers are for the most part a cylindrical copper tube with 11 mm inner radius whereas stainless steel will be used at selected locations for beam position monitors, bellows and corrector vacuum chambers. In order to cope with the low vacuum conductance, distributed pumping will be provided through NEG coating of all chambers, including those in dipole magnets making MAX IV the first storage ring to be fully NEG coated. We present the mechanical and thermal design of these chambers and discuss the challenges involved in extracting insertion device radiation as well as coping with the heat load from both IDs and bending magnets in a machine with large bending radius, narrow chambers and tight mechanical tolerance requirements.  
 
WEPC024 LOCO in the ALBA Storage Ring 2055
 
  • G. Benedetti, D. Einfeld, Z. Martí, M. Muñoz
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a 3 GeV 3rd generation light source which achieved first stored beam in February 2011, and will be commissioned during 2011. The ring comprises of 112 independent quadrupoles grouped in 14 families and 32 combined gradient dipoles powered in series. This paper reviews the process of recovering the design lattice and the symmetry of the machine, and the effects on orbit and lifetime. The main tool employ for this has been the LOCO implementation provided in the Matlab MiddleLayer. First results shows that the main effect on the symmetry is the difference between bending magnets. As this effect can not be compensated locally at present at the bendings, a global optics correction using all the quadrupoles is used.  
 
WEPC025 Modeling Results of the ALBA Booster 2058
 
  • G. Benedetti, D. Einfeld, U. Iriso, J. Marcos, Z. Martí, M. Muñoz, M. Pont
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The 3rd generation light source ALBA is in the process of being commissioned. The full energy 3 GeV booster synchrotron was commissioned in the during 2010, ramping the beam from extracted from the LINAC from an energy of 110 MeV to the 3 GeV required for injection in the storage ring. The lattice is based in combined function bending magnets, providing a small emittance beam (< 12 nmrad) at extraction. This paper reviews the agreement between the optics modeling and the measures performed during the commissioning, with special regard to the optics measurement during the ramping process. The results from the magnetic measurement for the combined magnets while ramping are included in the model to explain the movement of the tunes during the ramp.  
 
THPC024 Lattice Candidates for the ILSF Storage Ring 2957
 
  • H. Ghasem
    IPM, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
  • F. Saeidi
    ILSF, Tehran, Iran
 
  Iranian Light Source Facility (ILSF) is a new third generation synchrotron light source which is currently in design and will build in Iran. It will provide a high photon flux density to cover requirements of experimental science in several fields. Regarding to the proposed budget and in order to produce high quality X-ray pulses with several photon beamlines as a request of users, it is decided to design a very low emittance (ε<5nm-rad) storage ring with a typical beam intensity of 400 mA and circumference in the range of 280 m to 320 m. A number of design options with different lattice structure types, circumferences, etc., are explored and we present two designed lattice candidates of the ILSF storage ring. The associated Accelerator Physics issues are discussed.  
 
THPC025 Booster Design for ILSF 2960
 
  • H. Ghasem
    IPM, Tehran, Iran
  • E. Ahmadi
    ILSF, Tehran, Iran
  • D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  A full energy 3 GeV booster synchrotron has been designed to boost electron beam to the target energy of 3 GeV for the proposed third generation synchrotron light source (ILSF) that will be constructed in Iran. The primary goal of the ILSF booster is to design a synchrotron which can deliver a small emittance (ε<30 nm-rad), while at the same time has a low cost in construction. In order to design lattice for the booster, two configurations for booster have been considered. In the first configuration, booster is designed based on locating in a separate tunnel as 3 GeV storage ring inside the ring and in the second configuration, the booster is optimized for placing inner to the ring with one shared wall as service area of ILSF storage ring. Several types of lattice with various circumferences have been explored for the booster synchrotron in each configuration and this paper presents results of linear and nonlinear optimization of the main designed lattice for booster in both configurations.  
 
THPC054 Project Status of the Polish Synchrotron Radiation Facility Solaris 3014
 
  • C.J. Bocchetta, P.P. Goryl, K. Królas, M. Mlynarczyk, M.J. Stankiewicz, P.S. Tracz, Ł. Walczak, A.I. Wawrzyniak
    Solaris, Krakow, Poland
  • J. Ahlbäck, Å. Andersson, M. Eriksson, M.A.G. Johansson, D. Kumbaro, S.C. Leemann, L. Malmgren, J.H. Modéer, P.F. Tavares, S. Thorin
    MAX-lab, Lund, Sweden
  • E. Al-dmour, D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Funding: European Regional Development Fund within the frame of the Innovative Economy Operational Program: POIG.02.01.00-12-213/09
The Polish synchrotron radiation facility Solaris is being built at the Jagiellonian University in Krakow. The project is based on an identical copy of the 1.5 GeV storage ring being concurrently built for the MAX IV project in Lund, Sweden. A general description of the facility is given together with a status of activities. Unique features associated with Solaris are outlined, such as infra-structure, the injector and operational characteristics.
 
 
THPC055 Front Ends at ALBA 3017
 
  • J. Marcos, J. Campmany, D. Einfeld, J. Pasquaud
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  ALBA is a 3GeV 3rd generation synchrotron radiation source built nearby Barcelona currently under commissioning phase. This paper describes the design and installation of the set of 10 Front Ends that have been manufactured and assembled for day-one operation of the facility. This initial set includes 8 Front Ends devoted to transmit the photons generated by both Insertion Device or Bending Magnet sources to experimental Beamlines, and 2 additional Front Ends for electron beam-diagnostics purposes. The design of each individual Front End has been adapted in order to meet the aperture and power load requirements posed by both the characteristics of the photon sources and the needs of the Beamline users. At the same time, an effort has been made in order to keep a suitable degree of standardization among the components of different Front Ends. With this aim a modular design approach has been adopted. The general layout of the Front Ends as well as the design and function of their main components is described. Finally, a brief summary of their performance during the commissioning period is presented.  
 
THPC056 Orbit Studies during ALBA Commissioning 3020
 
  • M. Muñoz, G. Benedetti, D. Einfeld, Z. Martí
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  The 3rd generation light source ALBA is in the commissioning stage. This paper review the results of the commissioning concerning the transversal beam behavior, in particular the orbit correction system, results from the beam based alignment (BBA), and coupling. The orbit control system of ALBA consists of 88 horizontal and vertical correctors, mounted as extra coils in the sextupole magnets, up to 104 LIBERA BPMs (brilliance version). The correctors magnets would be used for both static orbit correction and for the fast orbit feedback mode, providing up to 1 mrad of correction in the static case. In phase one of the commissioning, the orbit has been corrected down to values of 50 um rms, with an estimated emittance ratio in the order of 1% .  
 
THPC172 Superconducting 119-pole Wiggler for ALBA Light Source 3302
 
  • N.A. Mezentsev, S.V. Khrushchev, V.K. Lev, E.G. Miginsky, V.A. Shkaruba, V.M. Syrovatin, V.M. Tsukanov, A.A. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • J. Campmany, D. Einfeld
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès, Spain
 
  Budker INP of Siberian Branch of the Russian Academy of Science has designed, manufactured and tested 119-pole superconducting wiggler for ALBA CELLS light source. The period length and maximal field of the wiggler are 30 mm 2.2 Ò correspondingly. Pole gap and vertical aperture for electron beam are 12.6 mm and 8.5 mm, accordingly. The wiggler magnetic structure closely comes nearer to undulator structure as K-value is about 6. The wiggler cryostat is bath cryostat type with use of cryocoolers which provide zero liquid helium consumption for long period. In June, 2010 the wiggler has been successfully tested on ALBA site. Test results of the wiggler including magnetic measurement, quench training, cryogenic system behavior for various mode of operation are presented.