Author: Eguiraun, M.
Paper Title Page
WEPC023 Beam Dynamics Simulations for the ESS-Bilbao H Ion Source 2052
 
  • I. Bustinduy, F.J. Bermejo, D. Fernandez-Cañoto, J.L. Munoz, I. Rodríguez
    ESS Bilbao, Bilbao, Spain
  • M. Eguiraun, J. Feuchtwanger, Z. Izaola
    ESS-Bilbao, Zamudio, Spain
 
  Simulations are performed for the Ion Source Test Stand (ITUR) of the ESS-Bilbao research accelerator facility. The beam dynamics is investigated as a function of the extraction voltages, the ion current, and the inclination angle of the ion source. The ITUR Penning H− ion source has the plasma aperture plate and extraction electrode inclined a certain angle with respect to the vertical axis to compensate for the Penning magnets field. The negative charged particles are extracted through a rectangular slit of 10×6 mm2. The extraction system is mainly composed of two devices, a rectangular extraction electrode and a refrigerated trumpet shaped device acting as an Einzel lens to focus the beam, and also, as a trap for neutral cesium atoms exiting from the source. Results are calculated and analyzed at the DC Current Transformer and pepperpot positions located at 245 mm and 882 mm from the ion source.  
 
WEPC152 Android Based Mobile Monitoring System for EPICS Networks: Vacuum System Application* 2337
 
  • I. Badillo, I. Arredondo, M. Eguiraun, J. Feuchtwanger, G. Harper
    ESS-Bilbao, Zamudio, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
When cabling is not really needed for performance reasons, wireless monitoring is a good choice for large scientific facilities like particle accelerators, due to the quick implementation. There are several wireless flavors: ZigBee, WiFi etc. depending on requirements of specific application. In this work, a wireless monitoring system for EPICS based on an Android device is presented. The task is to monitor the vacuum control system of ISHN project at ESSBilbao, where control system variables are acquired over the network and published in a mobile device. This allows the operator to check process variables everywhere the signal spreads. In this approach, a Python based server is continuously getting EPICS variables via CA protocol and sending them through a WiFi network using ICE middleware, a toolkit oriented to develop distributed applications. Finally, the mobile device reads and shows the data to the operator. The security of the communication is ensured by a limited WiFi signal spread, following the same idea as in NFC for larger distances. With this approach, local monitoring and control applications are easily implemented, useful in starting up and maintenance stages.
 
 
WEPC153 ISHN Ion Source Control System Overview and Future Developments 2340
 
  • M. Eguiraun, I. Arredondo, J. Feuchtwanger, G. Harper, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • S. Varnasseri
    ESS Bilbao, Derio, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
ISHN project consist on a Penning ion source which will deliver up to 65 mA of H beam pulsed at 50 Hz with a diagnostics vessel for beam testing purposes. The present work summarizes the control system of this research facility, and presents its future developments. ISHN consist of several power supplies for plasma generation and beam extraction, including auxiliary equipment and several diagnostics elements. The control system implemented with LabVIEW is based on PXI systems from National Instruments, using two PXI chassis connected through a dedicated fiber optic link between HV platform and ground. Source operation is managed by a real time processor, while additional tasks are performed by means of an FPGA. In addition, the control system uses a MySQL database for data logging, by means of a LabVIEW application connected to such DB. The integration of EPICS into the control system by deploying a Channel Access Server is the ongoing work, several alternatives are being tested. Finally, a high resolution synchronization system has been designed, for generating timing for triggers of plasma generation and extraction as well as data acquisition for beam diagnostics.
 
 
WEPC168 Implementation of a Workflow Model to Store and Analyze Measured Data at the ESS-Bilbao Ion Source Test Stand 2376
 
  • Z. Izaola, M. Eguiraun, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
In order to fully characterize the experimentally measured beam in any accelerator facility, both diagnostics measurements and operating parameters need to be stored and correlated. Generating thus, a substantial amount of data. To address this problem in the ESS-Bilbao Ion Source Test Stand (ITUR), we have developed a software toolkit. This software stores Pepperpot, Faraday-Cup, Retarding Potential Analyzer, ACCT and DCCT measurements in a relational database associated with the operating parameter values at the time of measurement. Furthermore, the toolkit stores in the same database the beam transverse dynamics parameters processed from the pepperpot device. This allows to connect easily the beam physics with the accelerator running parameters. MySQL has been used as database backend and Matlab as programming language.
 
 
THPS023 Automatic Tuner Unit Design, Simulation and Measurement for Automatic Operation of the RF System in the ESS-Bilbao H+ Ion Source 3469
 
  • L. Muguira, I. Arredondo, D. Belver, M. Eguiraun, F.J. Fernandez Huerta, J. Feuchtwanger, N. Garmendia, O. Gonzalez, J. Verdu
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
The Ion Source responsible intended to generate a high current and low emittance proton beam for the ESS-Bilbao is currently under construction. The plasma in the source is generated by coupling the 2.72 GHz power input from a Klystron through a magnetic field with an intensity close to the electron cyclotron resonance (ECR) field at the input RF frequency. The electrical behavior of the plasma strongly depends on different plasma characteristics which, at the same time, also depend on the microwave absorption. Thus, in order to maximize the RF power transferred to the plasma, a waveguide automatic tuner unit is employed to match the generator output to the electric impedance of the plasma. This device is generally adjusted manually. In this paper, the design, the 1D and 3D simulation, and measurements are presented which allows us to propose an automatic and real time control of the device. In a first approximation, with the aim of testing the proper operation of the automatic tuner unit, an in-house variable phase shifter and attenuator has been designed and manufactured to simulate the electric behavior of the plasma.