Author: del Campo, M.
Paper Title Page
WEPC153 ISHN Ion Source Control System Overview and Future Developments 2340
 
  • M. Eguiraun, I. Arredondo, J. Feuchtwanger, G. Harper, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • S. Varnasseri
    ESS Bilbao, Derio, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
ISHN project consist on a Penning ion source which will deliver up to 65 mA of H beam pulsed at 50 Hz with a diagnostics vessel for beam testing purposes. The present work summarizes the control system of this research facility, and presents its future developments. ISHN consist of several power supplies for plasma generation and beam extraction, including auxiliary equipment and several diagnostics elements. The control system implemented with LabVIEW is based on PXI systems from National Instruments, using two PXI chassis connected through a dedicated fiber optic link between HV platform and ground. Source operation is managed by a real time processor, while additional tasks are performed by means of an FPGA. In addition, the control system uses a MySQL database for data logging, by means of a LabVIEW application connected to such DB. The integration of EPICS into the control system by deploying a Channel Access Server is the ongoing work, several alternatives are being tested. Finally, a high resolution synchronization system has been designed, for generating timing for triggers of plasma generation and extraction as well as data acquisition for beam diagnostics.
 
 
WEPC154 EPICS HyperArchiver: initial tests at ESSBilbao 2343
 
  • M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • M.G. Giacchini, L.G. Giovannini
    INFN/LNL, Legnaro (PD), Italy
  • J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
The aim of this work is to present the results obtained after different tests performed regarding data storage for an Ion Source, by means of an EPICS control system at ESS-Bilbao (Spain). As a first approach, data was recorded on a MySQL database, using a traditional EPICS RDB Channel Archiver instance, maintained at ORNL SNS (USA). Nevertheless, initial results shown the need of an evolution towards a high performance scalable database. Therefore, current tests are focused on the customization and usage of a HyperArchiver instance, developed at INFN/LNL (Italy), which uses Hypertable as its main database. Hypertable is a distributed, high performance non relational database, released under GNU licence and focused on data-intensive tasks. At ESS Bilbao, a slightly modified version of the HyperArchiver was used, due to the necessity of an improvement on the management of array PVs. Regarding data retrieval and visualization, a python GUI developed at ESS-Bilbao was used, in opposition to the traditional CSS data browser, trying to make data retrieval as fast and simple as possible. Hypertable is presented as a high performance alternative to MySQL for any EPICS control system.
 
 
WEPC155 Fast Acquisition Multipurpose Controller with EPICS Integration and Data Logging 2346
 
  • I. Arredondo, D. Belver, P. Echevarria, H. Hassanzadegan, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • V. Etxebarria, J. Jugo
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • N. Garmendia, L. Muguira
    ESS Bilbao, Bilbao, Spain
 
  Funding: Funding Agency The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
This work introduces a fast acquisition multipurpose controller (MC), based on a XML configuration with EPICS integration and Data Logging. The main hardware is an FPGA based board, connected to a Host PC. This Host computer acts as the local controller and implements an IOC, integrating the device into an EPICS network. Java has been used as the main programming language in order to make the device fit the desired application. The whole process includes the use of different technologies: JNA to handle FPGA API, JavaIOC to integrate EPICS and XML w3c DOM classes to configure each particular application. Furthermore, a MySQL database is used for data storage, together with the deployment of an EPICS ArchiveEngine instance, offering the possibility to record data from both, the ArchiveEngine and a specifically designed Java library. The developed Java specific tools include different methods: FPGA management, creation and use of EPICS server, mathematical data processing, Archive Engine's MySQL database connection and creation/initialization of the application structure by means of an XML file. This MC has been used to implement a BPM and an LLRF applications for ESS-Bilbao.
 
 
WEPC168 Implementation of a Workflow Model to Store and Analyze Measured Data at the ESS-Bilbao Ion Source Test Stand 2376
 
  • Z. Izaola, M. Eguiraun, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • I. Bustinduy
    ESS Bilbao, Bilbao, Spain
 
  Funding: The present work is supported by the Basque Government and Spanish Ministry of Science and Innovation.
In order to fully characterize the experimentally measured beam in any accelerator facility, both diagnostics measurements and operating parameters need to be stored and correlated. Generating thus, a substantial amount of data. To address this problem in the ESS-Bilbao Ion Source Test Stand (ITUR), we have developed a software toolkit. This software stores Pepperpot, Faraday-Cup, Retarding Potential Analyzer, ACCT and DCCT measurements in a relational database associated with the operating parameter values at the time of measurement. Furthermore, the toolkit stores in the same database the beam transverse dynamics parameters processed from the pepperpot device. This allows to connect easily the beam physics with the accelerator running parameters. MySQL has been used as database backend and Matlab as programming language.
 
 
TUPC125 Test of the Front-end Electronics and Acquisition System for the LIPAC BPMs 1311
 
  • D. Belver, I. Arredondo, P. Echevarria, J. Feuchtwanger, H. Hassanzadegan, M. del Campo
    ESS-Bilbao, Zamudio, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • J.M. Carmona, A. Guirao, A. Ibarra, L.M. Martinez Fresno, I. Podadera
    CIEMAT, Madrid, Spain
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • N. Garmendia, L. Muguira
    ESS Bilbao, Bilbao, Spain
 
  Funding: Work partially supported by Spanish Ministry of Science and Innovation under project AIC10-A-000441 and ENE2009-11230.
Non-interceptive Beam Position Monitors pickups (BPMs) will be installed along the beamlines of the IFMIF/EVEDA linear prototype accelerator (LIPAC) to measure the transverse beam position in the vacuum chamber in order to correct the dipolar and tilt errors. Depending on the location, the BPMs response must be optimized for a beam of 175 MHz bunch repetition, an energy range from 5 up to 9 MeV, a current between 0.1 and 125 mA and continuous and pulse operation. The requirements from beam dynamics for the BPMs are quite stringent, aiming for the position an accuracy below 100 μm and a resolution below 10 μm, and for the phase an accuracy below 2° and a resolution below 0.3°. To meet these specifications, the BPM electronics system developed by ESS-Bilbao has been adapted for its use with the BPMs of LIPAC. This electronics system is divided in an Analog Front-End unit, where the signals are conditioned and converted to baseband, and a Digital Unit to sample them and calculate the position and phase. The electronics system has been tested at CIEMAT with a wire test bench and a prototype BPM. In this contribution, the tests performed will be fully described and the results discussed.